Skip to main content
Log in

Low Temperature Si Oxidation with Excimer Lamp Sources

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The principles of vacuum ultraviolet (VUV) and ultraviolet (UV) light generated from a new type of excimer lamp are described. Direct photo-oxidation of silicon at a temperature of 250°C has been investigated using a Xe *2 excimer lamp operating at a wavelength of 172 nm. The induced reaction rate of 0.1 nm/min is 90 times greater than thermal oxidation at 612°C. Results will be compared to those previously obtained by a low pressure mercury lamp and conventional furnace oxidation. Ozone plays an extremely important role in the reaction enhancement which was found to be strongly dependent upon oxygen pressure with the highest rates being achievable below 10 mbar. Ellipsometry, Fourier transform infrared spectroscopy, capacitance-voltage, and current-voltage measurements have been employed to characterise the oxide films grown and indicate them to be high quality layers. The electrical properties of the as-grown films have been improved significantly by applying an additional UV/O3 annealing step. A simple model explaining the observed reduction in the leakage current after UV annealing is proposed whilst the current conduction mechanism within the films is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nagasawa, H. Kitajima, D. Kitayama, Y. Okamoto, and H. Ikoma, Jpn. J. Appl. Phys.34, L1103 (1995).

    CAS  Google Scholar 

  2. S. S. Todorov and E.R. Fossum, Appl. Phys. Lett.52, 48 (1988).

    CAS  Google Scholar 

  3. I.W. Boyd and J.I.B. Wilson, Thin Solid films83, L173 (1981).

    Google Scholar 

  4. V. Nayar, I.W. Boyd, F.N. Goodall and G. Arthur, Appl. Surf. Sci.36, 134 (1989).

    Google Scholar 

  5. V. Nayar, P. Patel and I.W. Boyd, Electronics Letters26(30), 205 (1989).

    Google Scholar 

  6. I.W. Boyd, V. Craciun and A. Kazor, Jpn. J. Appl. Phys.32, 6141 (1993).

    CAS  Google Scholar 

  7. B. Eliasson and U. Kogelschatz, Appl. Phys.B46, 299 (1988).

    Google Scholar 

  8. U. Kogelschatz, Appl. Surf. Sci.54, 410 (1992).

    CAS  Google Scholar 

  9. J.-Y. Zhang and Ian W. Boyd, J. Appl. Phys.80, 633 (1996).

    CAS  Google Scholar 

  10. P. Bergonzo, U. Kogelschatz, and I.W. Boyd, Appl. Surf. Sci.69, 393 (1993).

    CAS  Google Scholar 

  11. H. Esrom, J. Demny, and U. Kogelschatz, Chemtronics4, 202 (1989).

    CAS  Google Scholar 

  12. H. Esrom, J.-Y. Zhang, and U. Kogelschatz, Mat. Res. Symp. Proc.236, 39 (1992).

    CAS  Google Scholar 

  13. P. Bergonzo and I.W. Boyd, Appl. Phys. Lett.63, 1757 (1993).

    CAS  Google Scholar 

  14. A. Kazor and I.W. Boyd, Appl. Surf. Sci.54, 460 (1992).

    CAS  Google Scholar 

  15. A. Kazor and I.W. Boyd, Photons and Low Energy particles in Surface Processing, eds. C.I.H. Ashby, J.H. Brannon and S.W. Pang, (MRS1992) Vol. 236, p371.

    CAS  Google Scholar 

  16. V. Cracium, A.H. Reader, W. Kersten, J. Timmers, D.J. Gravesteijn and I.W. Boyd, Thin Solid films222, 145 (1992).

    Google Scholar 

  17. J.-Y. Zhang and I.W. Boyd, Electronics Letters, 32, 2097 (1996).

    CAS  Google Scholar 

  18. A.N. Malinin, A.K. Shuaibov and V.S. Shevera, J. Appl. Spectrosc, 32, 313 (1980).

    Google Scholar 

  19. G.A. Volkova, N.N. Kirillova, E.N. Pavlovskaya and A.V. Yakovleva, J. Appl. Spectrosc.41, 1194 (1984).

    Google Scholar 

  20. B. Eliasson and U. Kogelschatz, Proc. 40 Ann. Gaseous Electron. Conf. (GEC 87), Atlanta1987, p. 174.

    Google Scholar 

  21. U. Kogelschatz, Pure & Appl. Chem.62, 1667 (1990).

    CAS  Google Scholar 

  22. M. Neiger, V. Schorpp and K. Stockwald, Proc. 41. Ann. Gaseous Electron. Conf. (GEC 88), Minneapolis p. 74, 1988.

    Google Scholar 

  23. B. Eliasson and B. Gellert, J. Appl. Phys.68, 2026 (1990).

    CAS  Google Scholar 

  24. P. Patel, I.W. Boyd, Appl. Surf. Sci., 46, 352 (1990).

    CAS  Google Scholar 

  25. H. Esrom and U. Kogelschatz, Appl. Surf. Sci., 54, 440 (1992).

    CAS  Google Scholar 

  26. F. Kessler and G.H. Bauer, Appl. Surf. Sci., 54, 430 (1992).

    CAS  Google Scholar 

  27. C. Cachoncinlle, J.M. Pouvesle, F. Davanloo, J.J. Coogan and C.B. Collins, Opt. Coram, 79 (1990) 41.

    CAS  Google Scholar 

  28. H.A. Keohler, L.J. Ferderber, D.L. Redhead, P.J. Ebert, Phys. Rev.A9(2), 768 (1974).

    Google Scholar 

  29. H. Langhoff, Opt. Comm., 68(1), 31 (1988).

    CAS  Google Scholar 

  30. T. Griegel, H.W. Drotleff, J.W. Hammer, and K. Petkau, J. Chem. Phys, 93(7), 4581 (1990).

    CAS  Google Scholar 

  31. B. Gellert, U. Kogelschatz, Appl. Phys.B52, 14 (1991).

    CAS  Google Scholar 

  32. B. Eliasson, M. Hirth and U. Kogelschatz, J. Phys D: Appl. Phys.20, 1421 (1987).

    CAS  Google Scholar 

  33. H. Esrom and U. Kogelschatz, Thin Solid films, 218, 231 (1992).

    CAS  Google Scholar 

  34. U. Kogelschatz, Appl. Surf. Sci.54, 410 (1992).

    CAS  Google Scholar 

  35. A. Kazor and I.W. Boyd, J. Appl. Phys.75, 227 (1994).

    CAS  Google Scholar 

  36. P.N. Sen and M.F. Thorpe, Phys. Rev.B15, 4030 (1977).

    Google Scholar 

  37. I.W. Boyd and J.I.B. Wilson, J. Appl. Phys.53, 4166 (1982).

    CAS  Google Scholar 

  38. H. Richter and T.E. Orlowski, J. Appl. Phys.56, 2351 (1984).

    CAS  Google Scholar 

  39. G. Eftekhari, J. Electrochem. Soc.140, 787 (1993).

    CAS  Google Scholar 

  40. H. Shinriki and M. Nakata, IEEE Tansactions on Electron Devices38, 455 (1991).

    CAS  Google Scholar 

  41. W.A. Pliskin, Thin Solid films2, 1 (1968).

    CAS  Google Scholar 

  42. I.W. Boyd and J.I.B. Wilson, J. Appl. Phys.62, 3195 (1987).

    CAS  Google Scholar 

  43. D.K. Shih, W.T. Chang, S.K. Lee, Y.H. Ku, and D.L. Kwong, Appl. Phys. Lett.52, 1698 (1988).

    CAS  Google Scholar 

  44. S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. U. Kogelschatz (ABB, Corporate Research, Switzerland) for many stimulating discussions. This work was partly supported by EPSRC (grant No. GR./J47750).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, I.W., Zhang, JY. Low Temperature Si Oxidation with Excimer Lamp Sources. MRS Online Proceedings Library 470, 343–354 (1997). https://doi.org/10.1557/PROC-470-343

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-470-343

Navigation