Skip to main content
Log in

Recent Advances in Huang Diffuse Scattering

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Measurements of the diffuse X-ray (or neutron) scattering allow the detailed investigation of point defects in crystalline solids. The method can be applied for defect sizes ranging from isolated point defects up to large dislocation loops. The diffuse scattering intensity close to the Bragg reflections, Huang Diffuse Scattering and Asymptotic Diffuse Scattering, is of special interest as the intensities from lattice distorting defects are high and the scattering theory is most straightforward for this region of the reciprocal lattice. After a short introduction to the theoretical background and to the experimental techniques the capabilities and limitations of the method will be demonstrated with examples of experimental results. i) The structure of interstitial atoms has been investigated for low temperature irradiated crystals and for metals with interstitially dissolved solute atoms. ii) The mobility and growth of interstitial agglomerates during annealing stage II of irradiated metals is discussed. The influence of impurities on the cluster growth is demonstrated for the example of Nibase alloys. iii) Defect clusters and defect distributions within cascades as observed after different types of irradiations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Huang, Proc. Roy. Soc. A190, 102 (1947).

    Google Scholar 

  2. H. Trinkaus, phys. stat. sol. (b) 51, 307 (1972) and 54, 209 (1972).

    Article  CAS  Google Scholar 

  3. P.H. Dederichs, J. Phys. F 3, 471 (l973).

    Article  CAS  Google Scholar 

  4. J. Peisl, in Defects and their Structure in Non-Metallic Solids (B. Henderson and H.E. Hughes, eds., Plenum 1976), p. 381.

  5. B.C. Larson and J.F. Barhorst, MRS Proc. Vol. 2 (Narajan and Tan eds., North Holland 1981), p. 151.

  6. W. Mayer, and J. Peisl, J. Nucl. Mat. 108/109 (1982) 627.

    Article  Google Scholar 

  7. M.A. Krivoglaz, Theory of X-ray and Thermal-Neutron Scattering by Real Crystals, (Plenum 1969).

  8. P. Ehrhart and B. Schönfeld, Phys. Rev. B19, 3896 (1979).

    Article  Google Scholar 

  9. R. Khanna, phys. stat. sol. (b), 115, 305 (l983).

    Article  CAS  Google Scholar 

  10. R.S. Averback and P. Ehrhart, J. Phys. F 14, 1347 and 1365 (1984).

    Article  CAS  Google Scholar 

  11. S.M. Ohr, phys. stat. sol. (b) 64, 317 (1974).

    Article  CAS  Google Scholar 

  12. P. Ehrhart, H. Trinkaus and B.C. Larson, Phys. Rev. B25, 834 (1982).

    Article  Google Scholar 

  13. P. Ehrhart, H.-G. Haubold and W. Schilling, Adv. in Sol. State Phys. XIV, 87 (1974).

    Article  Google Scholar 

  14. J. Peisl, J. Appl. Cryst. 8, 143 (1975).

    Article  Google Scholar 

  15. B.C. Larson and F.W. Young in Point Defects and Defect Interaction in Metals (J. Takamura, J. Dojama and M. Kiritani, eds. Univ. of Tokyo Press 1982), p. 679.

  16. E. Burkel, B.v. Guérard, H. Metzger, J. Peisl and C.M.F. Zeyen, Z. Phys. B35, 227 (1979).

    Article  Google Scholar 

  17. H. Metzger and J. Peisl, J. Phys. F 8, 391 (1978).

    Article  CAS  Google Scholar 

  18. H. Metzger, J. Peisl and J. Wanagel, J. Phys. F 6, 2195 (1976).

    Article  CAS  Google Scholar 

  19. U. Schubert, H. Metzger and J. Peisl, J. Phys. F 14, 2457 and 2467 (1984).

    Article  CAS  Google Scholar 

  20. P. Wombacher, JÜl-942-FF (1972).

  21. O. Bender and P. Ehrhart, J. Phys. F 13, 911 (1983).

    Article  CAS  Google Scholar 

  22. P. Ehrhart and U. Schlagheck, J. Phys. F 4, 1575 and 1589 (1974).

    Article  CAS  Google Scholar 

  23. P. Ehrhart and W. Schilling, Phys. Rev. B8, 2604 (1973).

    Article  Google Scholar 

  24. P. Ehrhart, H.D. Carstanjen, A.M. Fattah and J.B. Roberto, Phil. Mag. A40, 843 (1979).

    Article  Google Scholar 

  25. R. Balzer, O. Kroggel and H. Spalt, J. Phys. C 13, 6349 (1980).

    Article  CAS  Google Scholar 

  26. P. Ehrhart, in Dimensional Stability and Mechanical Behaviour of irradiated Metals and Alloys, BNES (London 1983) p. 101.

    Google Scholar 

  27. P. Ehrhart and B. Schönfeld, see /15/, p. 47.

  28. H.-G. Haubold and D. Martinsen, J. Nucl. Mat. 69/70, 644 (1978).

    Article  Google Scholar 

  29. W.G. Wolfer, J. Phys. F 12, 425 (1982).

    Article  CAS  Google Scholar 

  30. P.H. Dederichs, C. Lehmann, H.R. Schober, A. Scholz and R. Zeller, J. Nucl. Mat. 69/70, 176 (1978).

    Article  Google Scholar 

  31. H. Jacques and K.-H. Robrock, see /15/, p. 159.

  32. P. Ehrhart and U. Schlagheck in Fundamental Aspects of Radiation Damage in Metals, USERDA-Conf. 751006 (M.T. Robinson, F.W. Young, eds., 1975) p. 839.

  33. E. Segura and P. Ehrhart, Rad. Eff. 42, 233 (1979).

    Article  CAS  Google Scholar 

  34. P. Ehrhart, J. Nucl. Mat. 69/70, 200 (1978).

    Article  Google Scholar 

  35. B.v. Guérard, D. Grasse and J. Peisl, Phys. Rev. Lett. 44, 262 (1980).

    Article  Google Scholar 

  36. K.W. Ingle, R.C. Perrin and H.R. Schober, J. Phys. F 11, 1161 (1981).

    Article  CAS  Google Scholar 

  37. R.S. Averback, L.E. Rehn, W. Wagner and P. Ehrhart, J. Nucl. Mat. 118, 83 (1983).

    Article  CAS  Google Scholar 

  38. P. Ehrhart, B. Schönfeld and K. Sonnenberg, see /15/, p. 687.

  39. B.C. Larson, this conf.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhart, P. Recent Advances in Huang Diffuse Scattering. MRS Online Proceedings Library 41, 13–23 (1984). https://doi.org/10.1557/PROC-41-13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-41-13

Navigation