Skip to main content
Log in

A Monte Carlo Simulation of the Stillinger-Weber Model for Si−Ge Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The bulk phase behavior of silicon-germanium alloys is investigated by means of a constant pressure Monte Carlo simulation of the Stillinger-Weber potential in the semi-grand-canonical ensemble. At low temperatures, Si and Ge phase separate into a Si-rich phase and a Ge-rich phase. The two-phase region is terminated by a critical point whose nature is investigated thoroughly by the multihistogram method combined with finite size scaling analysis. These results showed that the critical behavior of the alloy belongs to the mean field universality class, presumably due to the elastic degrees of freedom. We have also studied the structural properties of the mixture and found that the linear thermal expansions of both Si and Ge agree well with experiments. We also verified Végard’s law above the critical point and calculated bond length distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Jain, J.R. Willis, and R. Bullogh, Adv. Phys. 39, 127 (1990).

    Article  CAS  Google Scholar 

  2. P.C. Kelires and J. Tersoff, Phys. Rev. Lett. 63, 1164 (1989).

    Article  CAS  Google Scholar 

  3. S. de Gironcoli, P. Giannozzi, and S. Baroni, Phys. Rev. Lett. 66, 2116 (1991).

    Article  Google Scholar 

  4. P.C. Weakliem and E.A. Carter, Phys. Rev. B 45, 13458 (1992).

    Article  CAS  Google Scholar 

  5. B. Dünweg and D.P. Landau, Phys. Rev. B 48, 14182 (1993).

    Article  Google Scholar 

  6. F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  7. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    Article  CAS  Google Scholar 

  8. R. Biswas and D.R. Hamman, Phys. Rev. Lett. 55, 2001 (1985).

    Article  CAS  Google Scholar 

  9. E.R. Cowley, Phys. Rev. Lett. 60, 2379 (1988).

    Article  CAS  Google Scholar 

  10. K. Ding and H.C. Andersen, Phys. Rev. B 34, 6987 (1986).

    Article  CAS  Google Scholar 

  11. M.E. Fisher, Rep. Prog. Phys. 30, 615 (1967).

    Article  CAS  Google Scholar 

  12. Finite Size Scaling and Numerical Simulation of Statistical Systems, edited by V. Privman (Word Scientific, Singapore 1990).

    Google Scholar 

  13. A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

    Article  CAS  Google Scholar 

  14. E. Brezin and J. Zinn-Justin, Nucl. Phys. B 257, 867 (1985).

    Article  Google Scholar 

  15. A.M. Ferrenberg and D.P. Landau, Phys. Rev. B 44, 5081 (1991).

    Article  CAS  Google Scholar 

  16. M. Laradji, D.P. Landau, and B. Dünweg, submitted to Phys. Rev. B (1994).

  17. The thermal expansion of Si in the low-temperature regime is well understood: see C.H. Xu, C.Z. Wang, C.T. Chan, and K.M. Ho, Phys. Rev. B 43, 5024 (1991).

    Article  CAS  Google Scholar 

  18. Semiconductors, Group IV Elements and III–V Compounds, Ed. O. Madelung (Springer-Verlag, Berlin Heidelberg 1991).

    Google Scholar 

  19. L. Végard, Z. Phys. 5, 17 (1921).

    Article  Google Scholar 

  20. N. Mousseau and M.F. Thorpe, Phys. Rev. B 46, 15887 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laradji, M., Landau, D.P. & Dünweg, B. A Monte Carlo Simulation of the Stillinger-Weber Model for Si−Ge Alloys. MRS Online Proceedings Library 358, 67 (1994). https://doi.org/10.1557/PROC-358-67

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-358-67

Navigation