Skip to main content
Log in

Interfacial Electronic Structure and Full Spectral Hamaker Constants of Si3N4 Intergranular Films from VUV and SR-VEEL Spectroscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The interfacial electronic structure, presented as the interband transition strength Jcv(ω) of the interatomic bonds, can be determined by Kramers Kronig (KK) analysis of vacuum ultraviolet (VUV) reflectance or spatially resolved valence electron energy loss (SR-VEEL) spectra. For the wetted interfaces in Si3N4, equilibrium thin glass films are formed whose thickness is determined by a force balance between attractive and repulsive force terms. KK analysis of Jcv(ω) to yield ξ(ξ) for the phases present, permits the direct calculation of the configuration-dependent Hamaker constants for the attractive vdW forces from the interfacial electronic structure.

Interband transition strengths and full spectral Hamaker constants for Si3N4 samples containing a SiYA1ON glass have been determined using SR-VEELS from grains and grain boundaries and compared with results from bulk VUV spectroscopy on separate samples of glass and nitride. The At2, Hamaker constant for Si3N4 with glass of the bulk composition is 8 zJ (zJ = 10−21 J) from the more established optical method. The EELS method permits the determination of vdW forces based upon actual local compositions and structure, which may differ noticeably from bulk standards. Current results show that full spectral Hamaker constants determined from VUV and SR-VEEL measurements of uniform bulk samples agree, but care must be taken in the single scattering and zero loss subtraction corrections, and more work is ongoing in this area. Still the results show that for the grain boundary films present in these polycrystalline Si3N4 samples the glass composition is of lower index of refraction. This can arise from increased oxygen content in the intergranular glass and leads to an increased value of the Hamaker constant (24 zJ) determined in situ from the SR-VEELS of a particular grain boundary film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mullejans, J. Bruley, R. H. French, P. A. Morris, “Quantitative Electronic Structure Analysis of α-A1203 Using Spatially Resolved Valence Electron Energy-Loss Spectra”, Proceedings of the MRS Symposium on “Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy”, ed. by M. Sarikaya, M. Isaacson, K. Wickramasighe, (1994).

    Google Scholar 

  2. J. N Israelachvili, Intermolecular and Surface Forces, Second Edition, Academic Press, London (1992).

    Google Scholar 

  3. D. H. Clarke, “On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials,” J. Am. Ceram. Soc., 70,15–22, (1987).

    Article  CAS  Google Scholar 

  4. Y. M. Chiang, L. E. Silverman, H. H. French, R. M. Cannon, “The Thin Glass Film between Ultrafine Conductor Particles in Thick Film Resistors”, Journal of the American Ceramics Society, 77, 1143–152, (1994).

    Article  CAS  Google Scholar 

  5. S. Loughin, R. H. French, W. Y. Ching, Y. N. Xu, G. A. Slack, “Electronic Structure of Aluminum Nitride: Theory and Experiment”, Applied Physics Letters, 63, 9, 1182–184, (1993).

    Article  CAS  Google Scholar 

  6. D. H. Clarke, G. Thomas, “Grain Boundary Phases in a Hot-Pressed Si3N4,” J. Am. Ceram. Soc., 60, 491–495, (1977).

    Article  CAS  Google Scholar 

  7. L. K. V. Lou, T. E. Mitchell, A.H. Heuer, “Impurity Phasesin Hot-Pressed Si3N4,” J. Am. Ceram. Soc., 61, 392–6, (1978).

    Article  CAS  Google Scholar 

  8. H.-J. Kleebe, M. K. Cinibulk, I. Tanaka, J. Bruley, R. M. Cannon, D. H. Clarke, M. J. Hoffman, M. Rilde, “High Resolution Electron Microscopy of Grain Boundary Films in Silicon Nitride Ceramics”, Mat. Res. Soc. Syrnp. Proc., 287, 65–78 (1993).

    Article  CAS  Google Scholar 

  9. H.-J. Kleebe, M. K. Cinibulk, R. M. Cannon, M. Rühle, Statistical Analysis of the Intergranular Film Thickness in Silicon Nitride Ceramics,” J. Am. Ceram. Soc., 76 1969–1977 (1993).

    Article  CAS  Google Scholar 

  10. H. H. French, R. M. Cannon, L. K. DeNoyer, Y.-M. Chiang, “Full Spectral Calculation of Non-Retarded Hamaker Constants for Ceramic Systems from Interband Transition Strengths” Solid State lonics, (1995).

    Google Scholar 

  11. S.-Y. Ren, W.Y. Ching, “Electronic Structures of β- and α-Silicon Nitride”, Phys. Rev. B, 23,5454–5463, (1981).

    Article  CAS  Google Scholar 

  12. J. Robertson, “The Electronic Properties of Silicon Nitride”, Phil. Mag. B, 44, 215-37, (1981).

    Article  CAS  Google Scholar 

  13. H. J. Sokel, “The Electronic Structure of Silicon Nitride”, J. Phys. Chem. Sol., 41, 899–906, 1980.

    Article  CAS  Google Scholar 

  14. W.Y. Ching, S.Y. Ren, “Electronic Structures of Si2N20 and Ge2N20 Crystals”, Phys. Rev. B., 24,5788–5795, (1981).

    Article  CAS  Google Scholar 

  15. C.-E. Morosanu, “The Preparation, Characterization and Applications of Silicon Nitride Thin Films”, Thin Solid Films, 65, 171–208, (1980).

    Article  CAS  Google Scholar 

  16. P. V. Bulkin, P. L. Smart, B. M. Lacquet, “Optical Properties of SiNX Deposited by Electron Cyclotron Resonance Plasma-enhanced Deposition”, Optical Engineering, 33, 2894–2897, (1994).

    Article  CAS  Google Scholar 

  17. M. Mashita, K. Matsushima, “Optical Properties of Reactively-Evaporated Silicon Oxynitride Films”, Japan J. of Appl. Phys. Suppl. 2, PL 1 7614, (1974).

  18. H. E. Livengood, M. A. Petrich, D. W. Hess, J. A. Reimer, “Structure and Optical Properties of Plasma-Deposited Fluorinated Silicon Nitride Thin Films”, J. Appl, Phys., 63, 2651–2659, (1988).

    Article  CAS  Google Scholar 

  19. J. Petalas, S. Logothetidis, “Tetrahedron-model Analysis of Silicon Nitride Thin Films and the Effect of Hydrogen and Temperature on their Optical Properties”, Phys. Rev. B, 50, 11801–11816, (1994).

    Article  CAS  Google Scholar 

  20. M. Krämer, M. J. Hoffman, G. Petzow, “Grain Growth Studies of Silicon Nitride Dispersed in an Oxynitride Glass”, J. Amer. Ceram. Soc., 76, 2778–2784, (1993).

    Article  Google Scholar 

  21. P. Hirsch, A. Howie, R. Nicholson, D. W. Pashley, M. J. Whelan, Electron Microscopy of Thin Crystals, Krieger Publishing Company, Florida, (1977).

    Google Scholar 

  22. H. H. French, “Laser-Plasma Sourced, Temperature Dependent VUV Spectrophotometer Using Dispersive Analysis,” Physica Scripta, 41. 4, 404–408, (1990).

    Article  CAS  Google Scholar 

  23. M. L. Bortz, R. H. French, “Optical Reflectivity Measurements Using a Laser Plasma Light Source,” Appl. Phys. Lett., 55, 19, 1955-7, Nov. 8, (1989).

    Article  CAS  Google Scholar 

  24. B. Johs, H. H. French, F. D. Kalk, W. A. McGahan, J. A. Woollam, “Optical Analysis of Complex Multilayer Structures Using Multiple Data Types”, SPIE Proceedings on Optical Interference Coatings, (1994).

    Google Scholar 

  25. M. L. Bortz, H. H. French, “Quantitative, FFT-Based, Kramers Kronig Analysis for Reflectance Data”, Applied Spectroscopy, 43, 8, 1498–1501, (1989).

    Article  CAS  Google Scholar 

  26. KKDupont.ab v. 4.1, Spectrum Squared, Ithaca NY.

  27. Grams/386 v. 3.0 lc, Galactic Industries, Salem NH.

  28. H. H. French, D. J. Jones, S. Loughin “Interband Electronic Structure of α-Al203 up to 2167 K”, Journal of the American Ceramics Society, 77, 412–422, (1994).

    Article  Google Scholar 

  29. F. Wooten, Optical Properties of Solids Academic Press, New York, 49, (1972).

  30. Gatan Software EI/P v. 2.1, Gatan Inc. Pleasanton CA.

  31. G. Duscher, H. Müllejans, M. Rühle, “Improvements in Electron Energy Loss Spectrum Imaging” to be submitted.

  32. Veels.ab, v. 1.6, Kkeels.ab v. 5.3e, Spectrum Square Associates, Ithaca NY 14850 USA.

  33. H. F. Egerton, Electron energy-loss spectroscopy in the electron microscope, Plenum, NY, 232, 362 (1986).

    Google Scholar 

  34. R. F. Egerton, Electron energy-loss spectroscopy in the electron microscope, Plenum, NY, 361, (1986).

  35. H. Mullejans, J. Bruley, R. H. French, P. A. Morris, “Quantitative Electronic Structure Analysis of α-A1203 Using Spatially Resolved Valence Electron Energy-Loss Spectra”, MRS Proceedings Symposium on “Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy”, ed. by M. Sarikaya, (1994).

    Google Scholar 

  36. H. C. Hamaker, “The London-Van der Waals Attraction between Spherical Particles,” Physica, 4, 10, 1058-72, (1937).

    Article  CAS  Google Scholar 

  37. R. H. French, R. M. Cannon, L. K. DeNoyer, Y.-M. Chiang, “Full Spectral Calculation of Non-Retarded Hamaker Constants for Ceramic Systems from Interband Transition Strengths” to appear in Solid State Ionics, (1995).

    Google Scholar 

  38. E. M. Lifshitz, “The Theory of Molecular Attractive Forces between Solids,” Soviet Phys. JETP, 2, 73–83, (1956).

    Google Scholar 

  39. I. E. Dzyaloshinskii, E. M. Lifshitz, L. P. Pitaevskii, “The General Theory of Van der Waals Forces,” Adv. Phys., 10, 38, 165–209, (1961).

    Article  Google Scholar 

  40. B. W. Ninham, V. A. Parsegian, “Van der Waals Forces Across Triple-Layer Films,” J. Chemical Physics”, 52, 4578-87, (1970). Our Equation 3 is identical to Ninham and Parseian’s Equation 15, except that L2 in their equation defines a unit area whereas we define E per unit area so the L2 does not arise in Equation 3. We use the symbol L to represent the film thickness.

    Article  CAS  Google Scholar 

  41. D. B. Hough, L. H. White, “The Calculation of Hamaker Constants from Lifshitz Theory with Application to Wetting Phenomena,” Advances in Colloid and Interface Science, 14 3–41, (1980).

    Article  CAS  Google Scholar 

  42. F. London, “The General Theory of Molecular Forces,” Trans. Faraday Soc., 33, 8–26, (1937)

    Article  CAS  Google Scholar 

  43. F. London, Z. Physik. Chem., B11, 246, (1936).

    Google Scholar 

  44. Hamaker.ab, v. 2.35, Spectrum Square Associates, Ithaca NY 14850 USA.

  45. H. F. Egerton, Electron enery-loss spectroscopy in the electron microscope, 362, 232 (Plenum, NY, 1986).

    Google Scholar 

  46. Of the composition discussed in Y. M. Chiang, L. E. Silverman, H. H. French, H. M. Cannon, “The Thin Glass Film between Ultrafine Conductor Particles in Thick Film Resistors”, Journal of the American Ceramics Society, 77, 1143–1152, (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, R.H., Scheu, C., Duscher, G. et al. Interfacial Electronic Structure and Full Spectral Hamaker Constants of Si3N4 Intergranular Films from VUV and SR-VEEL Spectroscopy. MRS Online Proceedings Library 357, 243–258 (1994). https://doi.org/10.1557/PROC-357-243

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-357-243

Navigation