Skip to main content
Log in

Programmable Skins based on Core-Shell Microsphere/Nanotube/Polymer Composites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper, we describe unique thermally responsive polymer system based on nanotube-elastomers dispersed with core-shell expanding microspheres (phase-change material). Upon thermal or infrared stimuli, liquid hydrocarbon cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. Microsphere transformation resulted in visible dimensional changes associated with macroscopic volume increase (>500%), reduction in density (>80%), and increase in elastic modulus (>675%). Additionally, electrically conductive nanotubes allowed for expansion dependent electrical responses. We present our new findings on expansion dependent superhydrophobicity in these materials and present some outlook and comparison of our stimuli responsive polymers with other material systems for future origami based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Ahir and E. M. Terentjev, Nat Mater 4 (6), 491–495 (2005).

    Article  CAS  Google Scholar 

  2. E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus and R. J. Wood, P Natl Acad Sci USA 107 (28), 12441–12445 (2010).

    Article  CAS  Google Scholar 

  3. S. Felton, M. Tolley, E. Demaine, D. Rus and R. Wood, Science 345 (6197), 644–646 (2014).

    Article  CAS  Google Scholar 

  4. E. Smela, O. Inganas and I. Lundstrom, Science 268 (5218), 1735–1738 (1995).

    Article  CAS  Google Scholar 

  5. E. W. H. Jager, O. Inganas and I. Lundstrom, Science 288 (5475), 2335–2338 (2000).

    Article  CAS  Google Scholar 

  6. E. W. H. Jager, E. Smela and O. Inganas, Science 290 (5496), 1540–1545 (2000).

    Article  CAS  Google Scholar 

  7. J. H. So, A. S. Tayi, F. Guder and G. M. Whitesides, Adv Funct Mater 24 (45), 7197–7204 (2014).

    CAS  Google Scholar 

  8. M. Yoshida and J. Lahann, Acs Nano 2 (6), 1101–1107 (2008).

    Article  CAS  Google Scholar 

  9. M. P. Thompson, M. P. Chien, T. H. Ku, A. M. Rush and N. C. Gianneschi, Nano Lett 10 (7), 2690–2693 (2010).

    Article  CAS  Google Scholar 

  10. P. Y. Chen, J. McKittrick and M. A. Meyers, Prog Mater Sci 57 (8), 1492–1704 (2012).

    Article  CAS  Google Scholar 

  11. J. Loomis, P. Xu and B. Panchapakesan, Nanotechnology 24 (18) (2013).

  12. L. R. G. Treloar, The Physics of Rubber Elasticity. (Oxford University Press, Oxford, 2005).

  13. J. Fritzsche and M. Kluppel, Journal of Physics: Condensed Matter 23 (3), 035104 (035111 pp.) (2011).

    CAS  Google Scholar 

  14. H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis and W. Barthlott, Beilstein J Nanotech 2, 152–161 (2011).

    Article  CAS  Google Scholar 

  15. W. D. Zhang, L. Shen, I. Y. Phang and T. Liu, Macromolecules 37 (2), 256-259 (2004).

    Article  CAS  Google Scholar 

  16. C. D. Onal, R. J. Wood and D. Rus, 2011 Ieee International Conference on Robotics and Automation (Icra) (2011).

  17. T. S. Kelby, M. Wang and W. T. S. Huck, Adv Funct Mater 21 (4), 652–657 (2011).

    Article  CAS  Google Scholar 

  18. T. S. Kelby and W. T. S. Huck, Macromolecules 43 (12), 5382–5386 (2010).

    Article  CAS  Google Scholar 

  19. S. M. Felton, M. T. Tolley, B. Shin, C. D. Onal, E. D. Demaine, D. Rus and R. J. Wood, Soft Matter 9 (32), 7688–7694 (2013).

    Article  CAS  Google Scholar 

  20. T. G. Leong, C. L. Randall, B. R. Benson, N. Bassik, G. M. Stern and D. H. Gracias, P Natl Acad Sci USA 106 (3), 703–708 (2009).

    Article  CAS  Google Scholar 

  21. V. Luchnikov, O. Sydorenko and M. Stamm, Adv Mater 17 (9), 1177-+ (2005).

    Article  CAS  Google Scholar 

  22. J. J. Guan, H. Y. He, D. J. Hansford and L. J. Lee, J Phys Chem B 109 (49), 23134–23137 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchapakesan, B., Onal, C. & Loomis, J. Programmable Skins based on Core-Shell Microsphere/Nanotube/Polymer Composites. MRS Online Proceedings Library 1800, 10 (2015). https://doi.org/10.1557/opl.2015.781

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2015.781

Navigation