Skip to main content
Log in

Closed loop microfluidic platform based on domain wall magnetic conduits: a novel tool for biology and medicine

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper we present an innovative on-chip platform suitable for the simultaneous manipulation and detection of the transit of a single magnetic bead. This system is based on the controlled displacement of constrained magnetic domain walls (DWs) that are used to move and sense particles in suspension over the chip. To this scope, the high stray field from the transverse DWs created at the corners of ferromagnetic zig-zag structures is used for particles manipulation, while electrical contacts flanking a single corner are employed to simultaneously monitor the DW passage through that corner, via anisotropic magneto resistance (AMR) measurements. A single DW carrying a magnetic particle is nucleated and manipulated within the zig-zag shaped magnetic conduit, trough the action of external magnetic fields. At the same time, the variation of the voltage drop across a corner flanked by a pair of electrical leads is measured, allowing to detect the transit of the DW thanks to the change of the relative orientation of current and spins at the corner related to the peculiar micromagnetic configuration of the DW (AMR). Work is in progress in order to selectively distinguish the transit of a naked DW from that of a DW bound to a magnetic particle. This work paves the way to the development of a closed-loop microlfuidic platform for on-chip bead manipulation, where single bead can be finely moved and their motion continuously checked, via AMR electrical detection and without need of optical monitoring, in a fully integrated closed-loop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jon Dobson. 2008 Nat. Nanotechnol. 3–139

    Google Scholar 

  2. R. Di Corato, N. Bigall, A. Ragusa, D. Dorfs, A. Genovese, R. Marotta, L. Manna, and T. Pellegrino. ACS Nano, 2011, 5(2), pp 1109–1121

    Article  CAS  Google Scholar 

  3. D. L. Graham, A. H. Ferreira and P. P. Freitas. 2004 Trends Biotechnol. 22 455

    Article  CAS  Google Scholar 

  4. G. Li, V. Joshi, R. L. White, S. X. Wang, T. X. Kemp, C. Webb, R.W. Davis and S. Sun. 2003 J. Appl. Phys. 93 7557

    Article  CAS  Google Scholar 

  5. E. Albisetti, D. Petti, M. Cantoni, F. Damin, A. Torti, M. Chiari and R. Bertacco. 2013 Biosensors and Bioelectronics. 47 213

    Article  CAS  Google Scholar 

  6. Z. Jiang, J. Llandro, T. Mitrelias and J. Bland. 2006 J. Appl. Phys. 88 08S105

    Article  Google Scholar 

  7. M. Miller, G. A. Prinz, S.F. Cheng, and S. Bounnak. 2002 Appl. Phys. Lett. 81 2211.

    Article  CAS  Google Scholar 

  8. P. Vavassori, V. Metlushko, B. Ilic, M. Gobbi, M. Donolato, M. Cantoni and R. Bertacco. 2008 Appl. Phys. Lett. 93 203502

    Article  Google Scholar 

  9. M. Donolato, M. Gobbi, P. Vavassori, M. Leone, M. Cantoni, V. Metlushko, B. Ilic, M. Zhang, S. Wang and R. Bertacco. 2009 Nanotechnology 20(38), 385501.

    Article  Google Scholar 

  10. S. M. Block, L. S. Goldstein, B. J. Schnapp. Nat 1990; 10.1038 348–352

    Google Scholar 

  11. N. T. Nguyen, S. A. M. Shaegh, N. Kashaninejad, D.T. Phan. Advanced Drug Delivery Reviews 65 (2013) 1403–1419.

    Article  CAS  Google Scholar 

  12. K. Gunnarsson, P. E. Roy, S. Felton, {etet al.} Adv Mater. 2005;17(14):1730–1734.

  13. M. Donolato, P. Vavassori, M. Gobbi, M. Deryabina, M. F. Hansen, V. Metlushko, B. Ilic, M. Cantoni, D. Petti, S. Brivio, and R. Bertacco. 2010 Adv. Material. 22, 2706.

    Article  CAS  Google Scholar 

  14. R. Bertacco, M. Donolato, M. Gobbi, M. Cantoni, S. Brivio, D. Petti, P. Vavassori. PCT/EP2010/000879 (2009), nanoGune Consolider

  15. M. Donolato, A. Torti, N. Kostesha, M. Deryabina, E. Sogne, P. Vavassori, M. F. Hansenband R. Bertacco. 2011 Lab Chip 11, 2976

    Article  CAS  Google Scholar 

  16. A. Torti, V. Mondiali, A. Cattoni, M. Donolato, E. Albisetti, A. Haghiri-Gosnet, P. Vavassori and R. Bertacco. 2012 Appl. Phys. Lett. 101 142405

    Article  Google Scholar 

  17. X. Janssen, L. van Ijzendoorn and M. Prins. 2007 Biosens. Bioelectron. 23 833

    Article  Google Scholar 

  18. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin and Romuald Houdré. 2013 Lab Chip 13, 3268–3274

    Article  CAS  Google Scholar 

Download references

acknowledgments

We thanks M. Leone and M. Bianchi for their technical assistance in the sample preparation, as well as A. Torti for fruitful discussions. This work has been partially funded by the project “Forces, mechanisms and pathways involved in the ATR-mediated control of nuclear plasticity in response to mechanical stress” - Rif. EP002, granted by Fondazione CEN–Centro Europeo di Nanomedicina and project “5x1000 junior” of Politecnico di Milano “Magnetically controlled single molecule delivery (MCSMD)”.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monticelli, M., Petti, D., Albisetti, E. et al. Closed loop microfluidic platform based on domain wall magnetic conduits: a novel tool for biology and medicine. MRS Online Proceedings Library 1686, 1–7 (2014). https://doi.org/10.1557/opl.2014.925

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.925

Navigation