Skip to main content
Log in

The Effect of Temperature in a thin Si Nanowire Transistor, with a Single Donor in the Channel, using Dissipative Physics

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Dissipative quantum transport simulations using the Non-Equilibrium Green Function Formalism have been carried out to obtain a transfer characteristic of a Si gate-all-around (GAA) nanowire transistor. A donor-type impurity has been located close to the source/channel interface, creating a resonant level. The existence and energy of the resonant level depends on the value of the gate bias. The dependence of the current reduction due to phonon scattering as a function of the gate bias, has a minimum due to the resonant level. The simulations at different temperatures have shown a decline in the sub-threshold slope at high temperature and an improvement at low temperature. Finally, the sub-threshold slope approximate follows the standard linear temperature dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Martinez, K. Kalna, and M. Aldegunde, “Impact of phonon scattering in a Si GAA nanowire FET with a single donor in the channel” IEEE NANO, Portland, 551—554 (2011).,

    Google Scholar 

  2. M. Aldegunde, A. Martinez, and J. R. Barker, “Study of discrete doping induced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations”, IEEE Electron Dev. Lett. 33, 194 (2012). 10.1109/LED.2011.2177634

    Article  CAS  Google Scholar 

  3. A. Martinez, N. Seoane, M. Aldegunde, A. R. Brown, J. R. Barker, and A. Asenov, “Quantum transport study on the impact of channel length and cross-section on variability induced by random discrete dopants in narrow gate-all-around silicon nanowire transistors”, IEEE Trans. Electron Devices 58, 2209–2217 (2011). 10.1109/TED.2011.2157929

    Article  CAS  Google Scholar 

  4. A. Martinez, N. Seoane, A. R. Brown, J. R. Barker, and A. Asenov, “Variability in Si Nanowire MOSFETs due to the combined effect of interface roughness and random dopants: A fully 3D NEGF simulation study”, IEEE Trans. Electron Devices 57, 1626–1635 (2010). 10.1109/TED.2010.2048405

    Article  CAS  Google Scholar 

  5. M. Aldegunde, A. Martinez, and A. Asenov, “Non-equilibrium Green’s function analysis of cross section and channel length dependence of phonon scattering and its impact on the performance of Si nanowire field effect transistors”, J. Appl. Phys. 110, 094518 (2011). 10.1063/1.3658856

    Article  Google Scholar 

  6. S. Jin, Y. J. Park, and H. S. Min, “A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions”, J. Appl. Phys. 99, 123719 (2006). 10.1063/1.2206885

    Article  Google Scholar 

  7. M. Pierre, R. Wacquez, X. Jehl, M. Sanquer, M. Vinet, and O. Cueto, “Singledonor ionization energies in a nanoscale CMOS channel”, Nat. Nanotechnol. 5, 2010, pp. 1128–1131. 10.1038/nnano.2009.373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, A., Kalna, K. & Aldegunde, M. The Effect of Temperature in a thin Si Nanowire Transistor, with a Single Donor in the Channel, using Dissipative Physics. MRS Online Proceedings Library 1550, 314 (2012). https://doi.org/10.1557/opl.2013.639

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.639

Navigation