Skip to main content
Log in

Sr-Diffusion in Ce0.8Gd0.2O2-δ Layers for SOFC Application

MRS Online Proceedings Library Aims and scope

Abstract

In this study Sr2+ diffusion along Ce0.8Gd0.2O2-δ (CGO) grain boundaries is investigated. Model samples with different grain boundary densities were prepared by different thin film tech-niques. Diffusion experiments were performed by annealing and subsequent ToF-SIMS analysis. The activation energy of grain boundary diffusion is determined as 492 kJ/mol, which is 2/3 of the bulk diffusion activation energy 739 kJ/mol, deduced from literature data [1-5].

The formation of an electrical blocking SrZrO3 layer due to grain boundary diffusion of Sr2+ through a CGO barrier layer may limit the long term stability of Solid Oxide Fuel Cells based on Zr0.85Y0.15O2-δ electrolytes and La0.58Sr0.4Co0.2Fe0.8O3-δ cathodes. The grain boundary diffusivity and the CGO grain boundary density highly influence the kinetic of the SrZrO3 formation. Aim of this study is to gain data for a prediction of the maximum lifetime of a SOFC system, limited by the increasing cell resistivity due to SrZrO3 formation. Specifications for the CGO barrier layer preparation concerning grain boundary density are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Izuki, M. E. Brito, K. Yamaji, et al., J. Power Sources, 196, 7232 (2011).

    Article  CAS  Google Scholar 

  2. R. Knibbe, A. Hauch, J. Hjelm, S. D. Ebbesen and M. Mogensen, Green, 1, 141 (2011).

    Article  CAS  Google Scholar 

  3. N. Sakai, H. Kishimoto, K. Yamaji, et al., ECS Trans., 7, 389 (2007).

    Article  Google Scholar 

  4. N. Sakai, H. Kishimoto, K. Yamaji, et al., J. Electrochem. Soc., 154, B1331 (2007).

    Article  CAS  Google Scholar 

  5. N. Sakai, K. Yamaji, T. Horita, et al., 13th Symposium of SOFC Society of Japan (2004).

  6. N. Menzler, L. Blum, H. Buchkremer, et al., Proc. Engin., 44, 407 (2012).

    Article  Google Scholar 

  7. L. G. J. de Haart and I. C. Vinke, ECS Trans., 35, 187 (2011).

    Article  Google Scholar 

  8. L. Kindermann, D. Das, H. Nickel and K. Hilpert, Solid State Ionics, 89, 215 (1996).

    Article  CAS  Google Scholar 

  9. H. Y. Tu, Y. Takeda, N. Imanishi and O. Yamamoto, Solid State Ionics, 117, 277 (1999).

    Article  CAS  Google Scholar 

  10. S. Sønderby, P. L. Popa, J. Lu, et al., Adv. Energy Mater., 10.1002/aenm.201300003n/a (2013).

  11. A. Mai, V. Haanappel, S. Uhlenbruck, et al., Solid State Ionics, 176, 1341 (2005).

    Article  CAS  Google Scholar 

  12. N. Jordan Escalona, W. Assenmacher, S. Uhlenbruck, et al., Solid State Ionics, 179, 919 (2008).

    Article  Google Scholar 

  13. F. Tietz, Q. Fu, V. Haanappel, et al.k, Int. J. Appl. Ceram. Tec., 4, 436 (2007).

    Article  CAS  Google Scholar 

  14. Y. M. Mishin, Phys. Status Solidi A, 133, 259 (1992).

    Article  Google Scholar 

  15. N. H. Menzler, F. Tietz, S. Uhlenbruck, et al., J. Mater. Sci., 45, 3109 (2010).

    Article  CAS  Google Scholar 

  16. R. Mücke, O. Büchler, M. Bram, et al., J. Power Sources, 196, 9528 (2011).

    Article  Google Scholar 

  17. S. Uhlenbruck, N. Jordan, D. Sebold, et al.r, Thin Solid Films, 515, 4053 (2007).

    Article  CAS  Google Scholar 

  18. L. G. Harrison, Trans. Faraday Soc., 57, 1191 (1961).

    Article  CAS  Google Scholar 

  19. J. C. Fisher, J. Appl. Phys., 22, 74 (1951).

    Article  CAS  Google Scholar 

  20. P. Gas, D. L. Beke and J. Bernardino, Philos. Mag. Lett., 65, 133 (1992).

    Article  Google Scholar 

  21. J. Sommer and C. Herzig, J. Appl. Phys., 72, 2758 (1992).

    Article  CAS  Google Scholar 

  22. S. Swaroop, M. Kilo, C. Argirusis, et al., Acta Mater., 53, 4975 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandt, T., Korte, C., Breuer, U. et al. Sr-Diffusion in Ce0.8Gd0.2O2-δ Layers for SOFC Application. MRS Online Proceedings Library 1542, 1105 (2013). https://doi.org/10.1557/opl.2013.629

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.629

Navigation