Skip to main content
Log in

Nucleation of the electroactive phase of poly(vinylidene fluoride) by ferrite nanoparticles: surface versus size effects

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Multiferroics and magnetoelectric materials show interesting scientific challenges and technnologial applications in sensors, acuators and data storage. In view of the fact that only a small number of materials show this kind of properties, exhaustive research activity is being pursued towards the development of new composite materials. Multiferroic nanocomposites films composed of piezoelectric poly(vinylidene fluoride) (PVDF) and magnetostrictive nanosize CoFe2O4, NiFe2O4 or NiZnFe2O4 ferrites were prepared by a solution method. Those ferrite nanoparticles have the ability to nucleate the electroactive β-phase of the polymer, providing in this way an easy route for the preparation of magnetoelectric particulate composites. The fact that the different nanoparticles promotes different amount of β-phase nucleation for different concentrations of nanoparticles indicates that filler size is not the most important parameter determining phase nucleation but the filler-matrix surface interaction. Further, when the polymer-ferrite surface interaction is modified through surfactation, the electroactive phase is not nucleated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. D. Mathur et al, Multiferroic and magnetoelectric materials . Nature, 2006. 442(7104): p. 759–765.

    Article  Google Scholar 

  2. N. Spaldin et al, T he renaissance of magnetoelectric multiferroics . Science. 2005. 309(573): p. 391–392.

    Article  CAS  Google Scholar 

  3. G. Rado et al, Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains . Physical Review Letters, 1961. 7(8): p. 310–311.

    Article  Google Scholar 

  4. C. Nan, et al, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions . Journal of Applied Physics, 2008. 103(3): p. 1–35.

    Article  Google Scholar 

  5. Y. Guo et al, Giant Magnetodielectric Effect in 0-3 Ni0.5Zn0.5Fe2O4-Poly(vinylidene-fluoride) Nanocomposite Films . Journal of Physical Chemistry C, 2010. 114(32): p. 13861–13866 .

    Article  CAS  Google Scholar 

  6. Y. Li et al, Magnetoelectric effect of Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 composites . Journal of the European Ceramic Society, 2006. 26(13): p. 2839–2844.

    Article  CAS  Google Scholar 

  7. L. Mitoseriu et al, BaTiO3-(Ni0.5Zn0.5)Fe2O4 ceramic composites with ferroelectric and magnetic properties . Journal of the European Ceramic Society, 2007. 27(13–15): p. 4379–4382.

    Article  CAS  Google Scholar 

  8. P. Martins et al, Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites . Applied Physics A, Materials Science & Processing, 2010. DOI: 10.1007/s00339-010-6003-7.

  9. Z. Zhang et al, The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0-3 nanocomposites . Journal of Applied Physics, 2009. 105(5): p. 1–6.

    Google Scholar 

  10. E. Fukada et al, History and recent progress in piezoelectric polymers . IEEE Transactions on ultrasonics ferroelectrics and frequency control, 2000. 47(6) p. 1277–1290.

    Article  CAS  Google Scholar 

  11. M. Branciforti et al, New Technique of Processing Highly Oriented Poly(vinylidene fluoride) Films Exclusively in the β Phase . Journal of polymer science Part B-Polymer Physics, 2007. 45(19): p. 2793–2801.

    Article  CAS  Google Scholar 

  12. P. Martins et al, Local variation of the dielectric properties of poly(vinylidene fluoride) during the alpha- to beta-phase transformation . Physics Letters A, 2009. 373(2): p. 177–180.

    Article  CAS  Google Scholar 

  13. S. Campelj et al, P reparation and properties of water-based magnetic fluids . Journal of Physics: Condensed Matter, 2008. 20(20): p. 1–5.

    Google Scholar 

  14. M Kobayashi et al, Molecular Vibrations of Three Crystal Forms of Poly(vinylidene fluoride) . Macromolecules, 1975. 8(2): p. 158–171.

    Article  CAS  Google Scholar 

  15. D. Miranda et al, Influence of Silver Nanoparticles Concentration on the alpha- to beta-Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites . Journal of nanoscience and nanotechnology, 2009. 9(5): p. 2910–2916.

    Article  CAS  Google Scholar 

  16. G. Botelho et al, Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. Journal of non-crystalline solids, 2008, 354(1): p. 72–78.

    CAS  Google Scholar 

  17. J. Andrew et al, Enhanced Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers with the Addition of Magnetic Nanoparticles . Langmuir, 2008. 24(16): 8435–8438.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, P., Costa, M.C., Benelmekki, M. et al. Nucleation of the electroactive phase of poly(vinylidene fluoride) by ferrite nanoparticles: surface versus size effects. MRS Online Proceedings Library 1312, 934 (2011). https://doi.org/10.1557/opl.2011.121

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.121

Navigation