Skip to main content
Log in

Carbon Nanotube Electronics and Optoelectronics

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are one-dimensional nanostructures with unique properties. This article discusses why CNTs provide an ideal basis for a future carbonbased nanoelectronic technology, focusing specifically on single-carbon-nanotube fieldeffect transistors (CNT-FETs). Results of transport experiments and theoretical modeling will be used to address such issues as the nature of the switching mechanism, the role of the metal contacts, the role of the environment, the FET scaling properties, and the use of these findings to produce high-performance p-type, n-type, and ambipolar CNT-FETs and simple intra-nanotube circuits. CNTs are also direct-gap nanostructures that show promise in the field of optoelectronics. This article briefly reviews their optical behavior and presents results that show that ambipolar CNT-FETs can be used to produce electrically controlled light sources based on radiative electron–hole recombination. The reverse process—that is, the generation of photocurrents by the irradiation of single CNT-FETs—and photoconductivity spectra of individual CNTs are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconducting Devices (Wiley, New York, 1981).

    Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45 (1992) p. 6234.

    CAS  Google Scholar 

  3. J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68 (1992) p. 631.

    CAS  Google Scholar 

  4. M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, eds., Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  5. Y. Imry and R. Landauer, Rev. Mod. Phys. 71 1999) p. S306.

  6. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995).

    Google Scholar 

  7. P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, and S.G. Louie, Phys. Rev. Lett. 83 (1999) p. 5098.

    CAS  Google Scholar 

  8. L. Wenjie, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkman, and P. Hongkum, Nature 411 (2001) p. 665.

    Google Scholar 

  9. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B. Laughlin, L. Liu, C.S. Jayanthi, and S.Y. Wu, Phys. Rev. Lett. 87 106801 (2001).

  10. J. Appenzeller, R. Martel, Ph. Avouris, H. Stahl, and B. Lengeler, Appl. Phys. Lett. 78 (2001) p. 3313.

    CAS  Google Scholar 

  11. D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Nano Lett. 3 (2003) p. 1541.

    CAS  Google Scholar 

  12. J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, D.W. Brouwer, and P.L. McEuen, “Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes,” arXiv.org e-print archive, cond-mat/0309641_(accessed March 2004).

    Google Scholar 

  13. A.Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett. 61 (2000) p. 2941.

    Google Scholar 

  14. A. Javey, J. Guo, M. Paulson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, “High-Field, Quasi-Ballistic Transport in Short Carbon Nanotubes,” arXiv.org e-print archive, cond-mat/0309242 (accessed March 2004).

    Google Scholar 

  15. P.G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Phys. Rev. Lett. 86 (2001) p. 3128.

    CAS  Google Scholar 

  16. P.G. Collins, M.S. Arnold, and Ph. Avouris, Science 292 (2001) p. 706.

    CAS  Google Scholar 

  17. S. Wind, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 91 058301 (2003).

  18. Y. Yaish, J.-Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, and P.L. McEuen, “Electrical Nanoprobing of Semiconducting Carbon Nanotubes Using an Atomic Force Microscope,” arXiv.org e-print archive, cond-mat/0305108 (accessed March 2004).

    Google Scholar 

  19. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424 (2003) p. 654.

    CAS  Google Scholar 

  20. Ph. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, Proc. IEEE 91 (2003) p. 1772.

    CAS  Google Scholar 

  21. S. Tans, S. Verschueren, and C. Dekker, Nature 393 (1998) p. 49.

    CAS  Google Scholar 

  22. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73 (1998) p. 2447.

    CAS  Google Scholar 

  23. H.T. Soh, C.F. Quate, A.F. Morpurgo, C. Marcus, J. Kong, and H. Dai, App. Phys. Lett. 75 (1999) p. 627.

    CAS  Google Scholar 

  24. R. Martel, H.-S.P. Wong, K. Chan, and Ph. Avouris, in Proc. IEDM 2001 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 159.

    Google Scholar 

  25. P.L. McEuen, M.S. Fuhrer, and H. Park, IEEE Trans. Nanotechnol. 1 (2002) p. 78 and references therein.

    Google Scholar 

  26. S.J. Wind, J. Appenzeller, R. Martel, and Ph. Avouris, Appl. Phys. Lett. 80 (2002) p. 3817.

    CAS  Google Scholar 

  27. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nat. Mater. 1 (2002) p. 241.

    CAS  Google Scholar 

  28. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and Ph. Avouris, Phys. Rev. Lett. 89 126801 (2002).

  29. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H.J. Dai, Nature 424 (2003) p. 654.

    CAS  Google Scholar 

  30. M. Radosavljevic, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 84 (2004) p. 3693.

    CAS  Google Scholar 

  31. Y.-C. Tseng, P. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor, and H. Dai, Nano Lett. 2004) in press.

    Google Scholar 

  32. A. Rochefort, M. Di Ventro and Ph. Avouris, Appl. Phys. Lett. 78 (2001) p. 2521.

    CAS  Google Scholar 

  33. T. Durkop, S.A. Getty, E. Cobas, and M.S. Fuhrer, Nano Lett. 4 (2004) p. 35.

    Google Scholar 

  34. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. Chen, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 87 256805 (2001).

  35. J. Appenzeller, M. Radosavljevic, J. Knoch, and Ph. Avouris, Phys. Rev. Lett. 92 648301 (2004).

  36. Ph. Avouris, I.-W. Lyo, and Y. Hasegawa, J. Vac. Sci. Technol., A 11 (1993) p. 1725.

    CAS  Google Scholar 

  37. F. Leonard and J. Tersoff, Phys. Rev. Lett. 84 (2000) p. 4693.

    CAS  Google Scholar 

  38. M. Freitag, M. Radosavljevic, Y. Zhou, A.T. Johnson, and W.F. Smith, Appl. Phys. Lett. 79 (2001) p. 3326.

    CAS  Google Scholar 

  39. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 89 106801 (2002).

  40. S.J. Wind, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 91 058301 (2003).

  41. N.D. Lang and Ph. Avouris, Phys. Rev. Lett. 84 (2000) p. 358; Phys. Rev. B 64 125323 (2001).

    CAS  Google Scholar 

  42. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, and R.E. Smalley, Chem. Phys. Lett. 313 (1999) p. 91.

    CAS  Google Scholar 

  43. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, X. Chunhui, L. Young Hee, K. Seong Gon, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, and R.E. Smalley, Science 273 (1996) p. 483.

    CAS  Google Scholar 

  44. M. Radosavljevic, S. Heinze, J. Tersoff, and Ph. Avouris, Appl. Phys. Lett. 83 (2003) p. 2435.

    CAS  Google Scholar 

  45. S. Heinze, J. Tersoff, and Ph. Avouris, Appl. Phys. Lett. 83 (2003) p. 5038.

    CAS  Google Scholar 

  46. Y.-M. Lin, J. Appenzeller, and Ph. Avouris, Nano Lett. 4 (2004) p. 947.

    CAS  Google Scholar 

  47. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287 (2000) p. 1801.

    CAS  Google Scholar 

  48. S.-H. Jhi, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 85 (2000) p. 1710.

    CAS  Google Scholar 

  49. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 80 (2002) p. 2773.

    CAS  Google Scholar 

  50. X. Cui, M. Freitag, R. Martel, L. Brus, and Ph. Avouris, Nano Lett. 3 (2003) p. 783.

    CAS  Google Scholar 

  51. S. Heinze, M. Radosavljevic, J. Tersoff, and Ph. Avouris, Phys. Rev. B 68 235418 (2003).

  52. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Nano Lett. 1 (2001) p. 453.

    CAS  Google Scholar 

  53. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294 (2001) p. 1317.

    CAS  Google Scholar 

  54. A. Javey, Q. Wang, A. Urai, Y. Li, and H. Dai, Nano Lett. 2 (2002) p. 929.

    CAS  Google Scholar 

  55. D.J. Frank and J. Appenzeller, IEEE Electron Device Lett. 25 (2004) p. 34.

    CAS  Google Scholar 

  56. M. Ishida, S. Mizuno, T. Yoshihino, Y. Saito, and A. Nakamura, J. Phys. Soc. Jpn. 68 (1999) p. 3131

    Google Scholar 

  57. R. Saito and H. Kataura, in Carbon Nanotubes: Synthesis, Structure, Properties and Applications, edited by M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer-Verlag, Berlin, 2001) p. 213.

  58. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 297 (2002) p. 2361.

    Google Scholar 

  59. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 298 (2002) p. 2361.

    CAS  Google Scholar 

  60. A. Hagen and T. Hertel, Nano Lett. 3 (2003) p. 383.

    CAS  Google Scholar 

  61. J. Lefebvre, Y. Homma, and P. Finnie, Phys. Rev. Lett. 90 217401 (2003).

  62. T. Ando, J. Phys. Soc. Jpn 66 (1996) p. 1066.

    Google Scholar 

  63. T.G. Pedersen, Phys. Rev. B 67 073401 (2003).

  64. C.L. Kane and E.J. Mele, Phys. Rev. Lett. 90 207401 (2003).

    CAS  Google Scholar 

  65. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Phys. Rev. Lett. 92 077402 (2004).

  66. V. Perebeinos, J. Tersoff, and Ph. Avouris, “Scaling of Excitons in Carbon Nanotubes,” arXiv e-print archive, cond-mat/0402091 (accessed March 2004); Phys. Rev. Lett. 2004) in press.

    Google Scholar 

  67. A. Fujuwara, Y. Matsuoka, H. Suematsu, N. Ogata, et al. Jpn. J. Appl. Phys., Part 1 40 2001) p. L1229.

  68. Y. Yamada, N. Naka, N. Nagasawa, Z.M. Li, and Z.K. Tang, Physica B 323 (2002) p. 239.

    Google Scholar 

  69. Y. Zhang and S. Iijima, Phys. Rev. Lett. 82 (1999) p. 3472.

    CAS  Google Scholar 

  70. M. Freitag, Y. Martin, J.A. Misewich, R. Martel, and Ph. Avouris, Nano Lett. 3 (2003) p. 1067.

    CAS  Google Scholar 

  71. J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, and J. Tersoff, Science 300 (2003) p. 783.

    CAS  Google Scholar 

  72. M. Freitag, J. Chen, A. Stein, T. Tsang, J. Misewich, R. Martel, and Ph. Avouris, Nano Lett. 2004) in press.

    Google Scholar 

  73. M. Freitag, J. Chen, J. Tsang, Q. Fu, J. Liu, and Ph. Avouris, Phys. Rev. Lett. 2004) submitted for publication.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avouris, P. Carbon Nanotube Electronics and Optoelectronics. MRS Bulletin 29, 403–410 (2004). https://doi.org/10.1557/mrs2004.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.123

Keywords

Navigation