Skip to main content
Log in

Noble gas ion beams in materials science for future applications and devices

  • Single Atom Fabrication with Beams and Probes
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Helium ion microscopy (HIM), enabled by a gas field ion source (GFIS), is an emerging imaging and nanofabrication technique compatible with many applications in materials science. The scanning electron microscope (SEM) has become ubiquitous in materials science for high-resolution imaging of materials. However, due to the fundamental limitation in focusing of electron beams, ion-beam microscopy is now being developed (e.g., at 20 kV the SEM beam diameter ranges from 0.5 to 1 nm, whereas the HIM offers 0.35 nm). The key technological advantage of the HIM is in its multipurpose design that excels in a variety of disciplines. The HIM offers higher resolution than the best available SEMs as well as the traditional gallium liquid-metal ion source (LMISs) focused ion beams (FIBs), and is capable of imaging untreated biological or other insulating samples with unprecedented resolution, depth of field, materials contrast, and image quality. GFIS FIBs also offer a direct path to defect engineering via ion implantation, three-dimensional direct write using gaseous and liquid precursors, and chemical-imaging options with secondary ion mass spectrometry. HIM covers a wide range of tasks that otherwise would require multiple tools or specialized sample preparation. In this article, we describe the underlying technology, present materials, relevant applications, and offer an outlook for the potential of FIB technology in processing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. C. Kittel, Introduction to Solid State (Wiley, New York, 1966).

    Google Scholar 

  2. P.M. Koenraad, M.E. Flatté, Nat. Mater. 10, 91 (2011).

    Google Scholar 

  3. S.V. Kalinin, A. Borisevich, S. Jesse, Nature 539, 485 (2016).

    Google Scholar 

  4. J. Notte, R. Hill, S. McVey, L. Farkas, R. Percival, B. Ward, Microsc. Microanal. 12, 126 (2006).

    Google Scholar 

  5. D.C. Joy, Helium Ion Microscopy: Principles and Applications (Springer, New York, 2013).

    Google Scholar 

  6. S. Jesse, A.Y. Borisevich, J.D. Fowlkes, A.R. Lupini, P.D. Rack, R.R. Unocic, B.G. Sumpter, S.V. Kalinin, A. Belianinov, O.S. Ovchinnikova, ACS Nano 10, 5600 (2016).

    Google Scholar 

  7. G. Hlawacek, A. Gölzhäuser, Helium Ion Microscopy (Springer, Switzerland, 2016).

    Google Scholar 

  8. O. Lehtinen, J. Kotakoski, A. Krasheninnikov, J. Keinonen, Nanotechnology 22, 175306 (2011).

    Google Scholar 

  9. J.F. Ziegler, J. Appl. Phys. 85, 1249 (1999).

    Google Scholar 

  10. S. Garashchuk, J. Jakowski, L. Wang, B.G. Sumpter, J. Chem. Theory Comput. 9, 5221 (2013).

    Google Scholar 

  11. A. Ievlev, J. Jakowski, M. Burch, V. Iberi, H. Hysmith, D.C. Joy, B.G. Sumpter, A. Belianinov, R.R. Unocic, O. Ovchinnikova, Nanoscale (forthcoming), doi: 10.1039/C7NR04417H.

  12. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).

    Google Scholar 

  13. J. Biersack, W. Eckstein, Appl. Phys. A 34, 73 (1984).

    Google Scholar 

  14. M. Ullrich, A. Burenkov, H. Ryssel, Nucl. Instrum. Methods Phys. Res. B 228, 373 (2005).

    Google Scholar 

  15. R. Timilsina, S. Tan, R. Livengood, P. Rack, Nanotechnology 25, 485704 (2014).

    Google Scholar 

  16. T.E. Everhart, R.F.M. Thornley, J. Sci. Instrum. 37, 246 (1960).

    Google Scholar 

  17. G. Hlawacek, V. Veligura, R. van Gastel, B. Poelsema, J. Vac. Sci. Technol. B 32, 020801 (2014).

    Google Scholar 

  18. J. Orloff, L. Swanson, M. Utlaut, High Resolution Focused Ion Beams: FIB and Its Applications: The Physics of Liquid Metal Ion Sources and Ion Optics and Their Application to Focused Ion Beam Technology (Springer, New York, 2003).

    Google Scholar 

  19. J.L. Hanssen, S.B. Hill, J. Orloff, J.J. McClelland, Nano Lett. 8, 2844 (2008).

    Google Scholar 

  20. Q. Ji, X. Jiang, T.-J. King, K.-N. Leung, K. Standiford, S. Wilde, J. Vac. Sci. Technol. B 20, 2717 (2002).

    Google Scholar 

  21. L. Bischoff, Ultramicroscopy 103, 59 (2005).

    Google Scholar 

  22. D. Winston, B.M. Cord, B. Ming, D. Bell, W. DiNatale, L. Stern, A. Vladar, M. Postek, M. Mondol, J. Yang, J. Vac. Sci. Technol. B 27, 2702 (2009).

    Google Scholar 

  23. F. Rahman, S. McVey, L. Farkas, J.A. Notte, S. Tan, R.H. Livengood, Scanning 34, 129 (2012).

    Google Scholar 

  24. F. Aramaki, T. Kozakai, O. Matsuda, O. Takaoka, Y. Sugiyama, H. Oba, K. Aita, A. Yasaka, “Photomask Repair Technology by Using Gas Field Ion Source,” Proc. SPIE Photomask Next Gener. Lithogr. Mask Technol. XIX 8441, (SPIE, Bellingham, WA, 2013) p. 84410D.

    Google Scholar 

  25. C.M. Gonzalez, R. Timilsina, G. Li, G. Duscher, P.D. Rack, W. Slingenbergh, W.F. van Dorp, J.T. De Hosson, K.L. Klein, H.M. Wu, J. Vac. Sci. Technol. B 32, 021602 (2014).

    Google Scholar 

  26. M.G. Stanford, B.B. Lewis, V. Iberi, J.D. Fowlkes, S. Tan, R. Livengood, P.D. Rack, Small 12, 1816 (2016).

    Google Scholar 

  27. H. Wu, L. Stern, D.C. Ferranti, D. Xia, M.W. Phaneuf, Proc. 39th Int. Symp. Testing Fail. Anal. (ASM International, Materials Park, OH, 2013) pp. 118–122.

  28. F.F. Rahman, J.A. Notte, R.H. Livengood, S. Tan, Ultramicroscopy 126, 10 (2013).

    Google Scholar 

  29. D. Wei, C. Huynh, A. Ribbe, Microsc. Microanal. 21, 1409 (2015).

    Google Scholar 

  30. T.C. Pekin, F.I. Allen, A.M. Minor, J. Microsc. 264 (1), 59 (2016).

    Google Scholar 

  31. A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, S.V. Kalinin, Nano Lett. 15, 3808 (2015).

    Google Scholar 

  32. Y. Yi, C. Wu, H. Liu, J. Zeng, H. He, J. Wang, Nanoscale 7, 15711 (2015).

    Google Scholar 

  33. J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, Nat. Nanotechnol. 9, 268 (2014).

    Google Scholar 

  34. K. Yoon, A. Rahnamoun, J.L. Swett, V. Iberi, D.A. Cullen, I.V. Vlassiouk, A. Belianinov, S. Jesse, X. Sang, O.S. Ovchinnikova, ACS Nano 10, 8376 (2016).

    Google Scholar 

  35. D. Emmrich, A. Beyer, A. Nadzeyka, S. Bauerdick, J. Meyer, J. Kotakoski, A. Gölzhäuser, Appl. Phys. Lett. 108, 163103 (2016).

    Google Scholar 

  36. G. Nanda, G. Hlawacek, S. Goswami, K. Watanabe, T. Taniguchi, P.F.A. Alkemade, Carbon 119, 419 (2017).

    Google Scholar 

  37. A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M.J. Kim, J. Kim, K. Cho, Nano Lett. 16, 5437 (2016).

    Google Scholar 

  38. D.S. Fox, Y. Zhou, P. Maguire, A. O’Neill, C. O’Coileain, R. Gatensby, A.M. Glushenkov, T. Tao, G.S. Duesberg, I.V. Shvets, Nano Lett. 15, 5307 (2015).

    Google Scholar 

  39. M.G. Stanford, P.R. Pudasaini, A. Belianinov, N. Cross, J.H. Noh, M.R. Koehler, D.G. Mandrus, G. Duscher, A.J. Rondinone, I.N. Ivanov, T.Z. Ward, P.D. Rack, Sci. Rep. 6, 27276 (2016).

    Google Scholar 

  40. V. Iberi, L. Liang, A.V. levlev, M.G. Stanford, M.W. Lin, X. Li, M. MahjouriSamani, S. Jesse, B.G. Sumpter, S.V. Kalinin, D.C. Joy, Sci. Rep. 6, 30481 (2016).

  41. M.G. Stanford, P.R. Pudasaini, E.T. Gallmeier, N. Cross, L. Liang, A. Oyedele, G. Duscher, M. Mahjouri-Samani, K. Wang, K. Xiao, D.B. Geohegan, A. Belianinov, B.G. Sumpter, P.D. Rack, Adv. Funct. Mater. 1702829 (2017), https://doi.org/10.1002/adfm.201702829.

  42. Z. Lin, B.R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M.A. Pimenta, M. Terrones, 2D Mater. 3, 022002 (2016).

  43. A. Belianinov, V. Iberi, A. Tselev, M.A. Susner, M.A. McGuire, D. Joy, S. Jesse, A.J. Rondinone, S.V. Kalinin, O.S. Ovchinnikova, ACS Appl. Mater. Interfaces 8, 7349 (2016).

    Google Scholar 

  44. N. Silvis-Cividjian, C.W. Hagen, Adv. Imaging Electron Phys. 143, 1 (2006).

    Google Scholar 

  45. A. Dubner, A. Wagner, J. Melngailis, C. Thompson, J. Appl. Phys. 70, 665 (1991).

    Google Scholar 

  46. R. Schmied, J.E. Fröch, A. Orthacker, J. Hobisch, G. Trimmel, H. Plank, Phys. Chem. Chem. Phys. 16, 6153 (2014).

    Google Scholar 

  47. J.D. Fowlkes, R. Winkler, B.B. Lewis, M.G. Stanford, H. Plank, P.D. Rack, ACS Nano 10 (6), 6163 (2016).

    Google Scholar 

  48. H. Wu, L. Stern, J. Chen, M. Huth, C. Schwalb, M. Winhold, F. Porrati, C. Gonzalez, R. Timilsina, P. Rack, Nanotechnology 24 175302 (2013).

    Google Scholar 

  49. L. Rotkina, J.-F. Lin, J. Bird, Appl. Phys. Lett. 83, 4426 (2003).

    Google Scholar 

  50. K. Gamo, S. Namba, Euro III-Vs Rev. 3, 41 (1990).

    Google Scholar 

  51. S. Matsui, T. Ichihashi, M. Mito, J. Vac. Sci. Technol. B 7, 1182 (1989).

    Google Scholar 

  52. P. Alkemade, H. Miro, Appl. Phys. A 117, 1727 (2014).

    Google Scholar 

Download references

Acknowledgements

M.J.B., S.K., and O.O. acknowledge research conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. A.B. acknowledges research by the Laboratory of Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belianinov, A., Burch, M.J., Kim, S. et al. Noble gas ion beams in materials science for future applications and devices. MRS Bulletin 42, 660–666 (2017). https://doi.org/10.1557/mrs.2017.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.185

Navigation