Skip to main content
Log in

Hole-transport material-free perovskite-based solar cells

  • Perovskite Photovoltaics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recent discoveries have revealed a breakthrough in the photovoltaics (PVs) field using organometallic perovskites as light harvesters in the solar cell. The organometal perovskite arrangement is self-assembled as alternate layers via a simple low-cost procedure. These organometal perovskites promise several benefits not provided by the separate constituents. This overview concentrates on implementing perovskites in PV cells such that the perovskite layers are used as the light harvester as well as the hole-conducting component. Eliminating hole-transport material (HTM) in this solar-cell structure avoids oxidation, reduces costs, and provides better stability and consistent results. Aspects of HTM-free perovskite solar cells discussed in this article include (1) depletion regions, (2) high voltages, (3) panchromatic responses, (4) chemical modifications, and (5) contacts in HTM-free perovskite solar cells. Elimination of HTM could expand possibilities to explore new interfaces in these solar cells, while over the long term, these uniquely structured HTM-free solar cells could offer valuable benefits for future PV and optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Chem. Lett. 41, 397 (2012).

    Google Scholar 

  2. C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Science 286, 945 (1999).

    Google Scholar 

  3. D.B. Mitzi, C.A. Field, Z. Schlesinger, R.B. Laibowitz, J. Solid State Chem. 114, 159 (1995).

    Google Scholar 

  4. M. Lee, M.J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012).

    Google Scholar 

  5. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Energy Environ. Sci. 6, 1739 (2013).

    Google Scholar 

  6. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-J. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Nat. Photonics 7, 486 (2013).

    Google Scholar 

  7. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy Environ. Sci. 7, 2619 (2014).

    Google Scholar 

  8. A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H.J. Snaith, Nano Lett. 14 (6), 3247 (2014).

  9. D. Bi, S.J. Moon, L. Haggman, G. Boschloo, L. Yang, E.M.J. Johansson, M.K. Nazeeruddin, M. Graetzel, RSC Adv. 3, 18762 (2013).

    Google Scholar 

  10. G.E. Epron, V.M. Burlakov, A. Goriely, H.J. Snaith, ACS Nano 8 (1), 591 (2014).

  11. G.E. Epron, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Adv. Funct. Mater. 24, 151 (2014).

    Google Scholar 

  12. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13, 1764 (2013).

    Google Scholar 

  13. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Graetzel, J. Am. Chem. Soc. 134, 17396 (2012).

    Google Scholar 

  14. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, Nanoscale 5, 3245 (2013).

    Google Scholar 

  15. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013).

    Google Scholar 

  16. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013).

    Google Scholar 

  17. C. Zuo, L. Ding, Nanoscale 6, 9935 (2014).

    Google Scholar 

  18. H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, S. Dai, Chem. Commun. 49, 7277 (2013).

    Google Scholar 

  19. National Renewable Energy Laboratory, Best Research-Cell Efficiencies; http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.

  20. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013).

    Google Scholar 

  21. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013).

    Google Scholar 

  22. W.A. Laben, L. Etgar, Energy Environ. Sci. 6, 3249 (2013).

    Google Scholar 

  23. S. Aharon, B.E. Cohen, L. Etgar, J. Phys. Chem. C 118, 17160 (2014).

    Google Scholar 

  24. B.E. Cohen, S. Gamliel, L. Etgar, APL Mater. 2, 081502 (2014).

    Google Scholar 

  25. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D Li, Q. Meng, Appl. Phys. Lett. 104, 063901 (2014).

    Google Scholar 

  26. S. Aharon, S. Gamliel, B.E. Cohen, L. Etgar, Phys. Chem. Chem. Phys. 16, 10512 (2014).

    Google Scholar 

  27. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 345 (6194), 295 (2014).

  28. E. Edri, S. Kirmayer, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 4, 897 (2013).

    Google Scholar 

  29. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 5, 429 (2014).

    Google Scholar 

  30. S. Ryu, J.H. Noh, N.J. Jeon, Y.C. Kim, W.S. Yang, J. Seo, S.I. Seok, Energy Environ. Sci. 7, 2614 (2014).

    Google Scholar 

  31. A. Dymshits, A. Rotem, L. Etgar, J. Mater. Chem. A 2, 20776 (2014).

    Google Scholar 

  32. L. Etgar, P. Gao, P. Qin, M. Graetzel, M.K. Nazeeruddin, J. Mater. Chem. A 2, 11586 (2014).

    Google Scholar 

  33. S. Lv, S. Pang, Y. Zhou, N.P. Padture, H. Hu, L. Wang, X. Zhou, H. Zhu, L. Zhang, G. Cui, Phys. Chem. Chem. Phys. 16, 19206 (2014).

    Google Scholar 

  34. S. Aharon, A. Dymshits, A. Rotem, L. Etgar, J. Mater. Chem. A 3, 9171 (2015).

    Google Scholar 

  35. F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, L. Sun, ACS Appl. Mater. Interfaces 6, 16140 (2014).

    Google Scholar 

  36. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, J. Phys. Chem. Lett. 5, 3241 (2014).

    Google Scholar 

  37. M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, H. Han, J. Mater. Chem. A 2, 17115 (2014).

    Google Scholar 

  38. F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 16411 (2014).

    Google Scholar 

Download references

Acknowledgment

L.E. thanks the Israel Alternative Energy Foundation (I-SAEF) that financed parts of this research, the Ministry of Industry Trade and Labor Office of the Chief Scientist Kamin project N0.50303, and the Tashtiot project of the Office of the Chief Scientist. The author would like to thank the students who worked on these results: S. Aharon, S. Gamliel, A. Dymshits, A. Rotem, B.E Cohen, T. Englman, and M. Koolyk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioz Etgar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etgar, L. Hole-transport material-free perovskite-based solar cells. MRS Bulletin 40, 674–680 (2015). https://doi.org/10.1557/mrs.2015.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.174

Navigation