Skip to main content

Advertisement

Log in

Materials challenges in rechargeable lithium-air batteries

  • Lithium Batteries and Beyond
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Lithium-air batteries have received extraordinary attention recently owing to their theoretical gravimetric energies being considerably higher than those of Li-ion batteries. There are, however, significant challenges to practical implementation, including low energy efficiency, cycle life, and power capability. These are due primarily to the lack of fundamental understanding of oxygen reduction and evolution reaction kinetics and parasitic reactions between oxygen redox intermediate species and nominally inactive battery components such as carbon in the oxygen electrode and electrolytes. In this article, we discuss recent advances in the mechanistic understanding of oxygen redox reactions in nonaqueous electrolytes and the search for electrolytes and electrode materials that are chemically stable in the oxygen electrode. In addition, methods to protect lithium metal against corrosion by water and dendrite formation in aqueous lithium-air batteries are discussed. Further materials innovations lie at the heart of research and development efforts that are needed to enable the development of lithium-oxygen batteries with enhanced round-trip efficiency and cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, Y. Shao-Horn, Energy Environ. Sci. 6, 750 (2013).

    Google Scholar 

  2. J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K.T. Lee, J. Cho, Adv. Energy Mater. 1, 34 (2011).

    Google Scholar 

  3. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Nat. Mater. 11, 19 (2012).

    Google Scholar 

  4. J. Christensen, P. Albertus, R.S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J. Electrochem. Soc. 159, R1 (2012).

    Google Scholar 

  5. P.G. Bruce, L.J. Hardwick, K.M. Abraham, MRS Bull. 36, 506 (2011).

    Google Scholar 

  6. Y. Shao, S. Park, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, ACS Catal. 2, 844 (2012).

    Google Scholar 

  7. Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, Science 337, 563 (2012).

    Google Scholar 

  8. B.M. Gallant, R.R. Mitchell, D.G. Kwabi, J. Zhou, L. Zuin, C.V. Thompson, Y. Shao-Horn, J. Phys. Chem. C 116, 20800 (2012).

    Google Scholar 

  9. S.H. Oh, L.F. Nazar, Adv. Energy Mater. 2, 903 (2012).

    Google Scholar 

  10. Z.-L. Wang, D. Xu, J.-J. Xu, L.-L. Zhang, X.-B. Zhang, Adv. Funct. Mater. 22, 3699 (2012).

    Google Scholar 

  11. S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources 189, 371 (2009).

    Google Scholar 

  12. N. Imanishi, S. Hasegawa, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources 185, 1392 (2008).

    Google Scholar 

  13. B.D. McCloskey, D.S. Bethune, R.M. Shelby, G. Girishkumar, A.C. Luntz, J. Phys. Chem. Lett. 2, 1161 (2011).

    Google Scholar 

  14. H. Ikeda, R. Hoch, R. Hausslein, US Patent 05879836 (1999).

  15. H. Xia, L. Lu, G. Ceder, J. Power Sources 159, 1422 (2006).

    Google Scholar 

  16. Y. Zhu, C. Wang, J. Phys. Chem. C 114, 2830 (2010).

    Google Scholar 

  17. K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Science 311, 977 (2006).

    Google Scholar 

  18. H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J.-M. Tarascon, ChemSusChem 1, 348 (2008).

    Google Scholar 

  19. B.M. Gallant, D.G. Kwabi, R.R. Mitchell, J. Zhou, C.V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 6, 2518 (2013).

    Google Scholar 

  20. R.R. Mitchell, B.M. Gallant, C.V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 4, 2952 (2011).

    Google Scholar 

  21. R. Black, S.H. Oh, J. Lee, T. Yim, B. Adams, L.F. Nazar, J. Am. Chem. Soc. 134, 2902 (2012).

    Google Scholar 

  22. D. Xu, Z. Wang, J. Xu, L. Zhang, X. Zhang, Chem. Commun. 48, 6948 (2012).

    Google Scholar 

  23. R.R. Mitchell, B.M. Gallant, Y. Shao-Horn, C.V. Thompson, J. Phys. Chem. Lett. 4, 1060 (2013).

    Google Scholar 

  24. J.S. Hummelshøj, A.C. Luntz, J.K. Nørskov, J. Chem. Phys. 138, 034703 (2013).

    Google Scholar 

  25. Z. Peng, S.A. Freunberger, L.J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. Graham, J.-M. Tarascon, P.G. Bruce, Angew. Chem. Int. Ed. Engl. 50, 6351 (2011).

    Google Scholar 

  26. B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib, L.F. Nazar, Energy Environ. Sci. 6, 1772 (2013).

    Google Scholar 

  27. D. Zhai, H.-H. Wang, J. Yang, K.C. Lau, K. Li, K. Amine, L.A. Curtiss, J. Am. Chem. Soc. 135, 15364 (2013).

    Google Scholar 

  28. L. Zhong, R.R. Mitchell, Y. Liu, B.M. Gallant, C.V. Thompson, J.Y Huang, S.X. Mao, Y. Shao-Horn, Nano Lett. 13, 2209 (2013).

    Google Scholar 

  29. B.D. McCloskey, A. Speidel, R. Scheffler, D.C. Miller, V. Viswanathan, J.S. Hummelshøj, J.K. Nørskov, A.C. Luntz, J. Phys. Chem. Lett. 3, 997 (2012).

    Google Scholar 

  30. D.M. Itkis, D.A. Semenenko, E.Y Kataev, A.I. Belova, V.S. Neudachina, A.P. Sirotina, M. Hävecker, D. Teschner, A. Knop-Gericke, P. Dudin, A. Barinov, E.A. Goodilin, Y. Shao-Horn, L.V. Yashina, Nano Lett. 13, 4697 (2013).

    Google Scholar 

  31. B.D. McCloskey, A. Valery, A.C. Luntz, S.R. Gowda, G.M. Wallraff, J.M. Garcia, T. Mori, L.E. Krupp, J. Phys. Chem. Lett. 4, 2989 (2013).

    Google Scholar 

  32. M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, PG. Bruce, J. Am. Chem. Soc. 135, 494 (2012).

    Google Scholar 

  33. Y.-C. Lu, E.J. Crumlin, G.M. Veith, J.R. Harding, E. Mutoro, L. Baggetto, N.J. Dudney, Z. Liu, Y. Shao-Horn, Sci. Rep. 2, 715 (2012).

    Google Scholar 

  34. M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P.G. Bruce, Nat. Mater.12, 1050 (2013).

  35. F. Mizuno, S. Nakanishi, Y. Kotani, S. Yokoishi, H. Iba, Electrochemistry 78, 403 (2010).

    Google Scholar 

  36. W. Xu, V.V. Viswanathan, D. Wang, S.A. Towne, J. Xiao, Z. Nie, D. Hu, J.-G. Zhang, J. Power Sources 196, 3894 (2011).

    Google Scholar 

  37. V.S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, G.V. Chase, J. Electrochem. Soc. 160, A160 (2012).

    Google Scholar 

  38. D.T. Sawyer, J.L. Roberts, Jr., J. Electroanal. Chem. 12, 90 (1966).

    Google Scholar 

  39. CO. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, J. Phys. Chem. C 113, 20127 (2009).

    Google Scholar 

  40. R. Younesi, M. Hahlin, F. Björefors, P. Johansson, K. Edström, Chem. Mater. 25, 77 (2012).

    Google Scholar 

  41. J. Herranz, A. Garsuch, H.A. Gasteiger, J. Phys. Chem. C 116, 19084 (2012).

    Google Scholar 

  42. W. Walker, V. Giordani, J. Uddin, V.S. Bryantsev, G.V. Chase, D. Addison, J. Am. Chem. Soc. 135, 2076 (2013).

    Google Scholar 

  43. F. Mizuno, K. Takechi, S. Higashi, T. Shiga, T. Shiotsuki, N. Takazawa, Y. Sakurabayashi, S. Okazaki, I. Nitta, T. Kodama, H. Nakamoto, H. Nishikoori, S. Nakanishi, Y. Kotani, H. Iba, J. Power Sources 228, 47 (2013).

    Google Scholar 

  44. S.A. Freunberger, Y. Chen, N.E. Drewett, L.J. Hardwick, F. Bardé, PG. Bruce, Angew. Chem. Int. Ed. Engl. 50, 8609 (2011).

    Google Scholar 

  45. C. Laoire, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Electrochem. Soc. 158, A302 (2011).

    Google Scholar 

  46. M. Leskes, N.E. Drewett, L.J. Hardwick, PG. Bruce, G.R. Goward, C.P Grey, Angew. Chem. Int. Ed. Engl. 51, 8560 (2012).

    Google Scholar 

  47. Y. Chen, S.A. Freunberger, Z. Peng, F. Bardé, P.G. Bruce, J. Am. Chem. Soc. 134, 7952 (2012).

    Google Scholar 

  48. F. Mizuno, S. Nakanishi, A. Shirasawa, K. Takechi, T. Shiga, H. Nishikoori, H. Iba, Electrochemistry 79, 876 (2011).

    Google Scholar 

  49. K. Takechi, S. Higashi, F. Mizuno, H. Nishikoori, H. Iba, T. Shiga, ECS Electrochem. Lett. 1, A27 (2012).

    Google Scholar 

  50. S. Monaco, A.M. Arangio, F. Soavi, M. Mastragostino, E. Paillard, S. Passerini, Electrochim. Acta 83, 94 (2012).

    Google Scholar 

  51. C.J. Allen, J. Hwang, R.A. Kautz, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Phys. Chem. C 116, 20755 (2012).

    Google Scholar 

  52. K.U. Schwenke, S. Meini, X. Wu, H.A. Gasteiger, M. Piana, Phys. Chem. Chem. Phys. 15, 11830 (2013).

    Google Scholar 

  53. D. Aurbach, M. Daroux, P. Faguy, E. Yeager, J. Electroanal. Chem. Interfacial Electrochem. 297, 225 (1991).

    Google Scholar 

  54. V.S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S. Zecevic, K. Sasaki, J. Uddin, D.Addison, G.V. Chase, J. Phys. Chem. A 115, 12399 (2011).

    Google Scholar 

  55. C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson J. Phys. Chem. C 114, 9178 (2010).

  56. C.J. Allen, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Phys. Chem. Lett. 2, 2420 (2011).

    Google Scholar 

  57. H.-G. Jung, J. Hassoun, J.-B. Park, Y.-K. Sun, B. Scrosati, Nat. Chem. 4, 579 (2012).

    Google Scholar 

  58. Y.-C. Lu, H.A. Gasteiger, Y. Shao-Horn, J. Am. Chem. Soc. 133 (47), 19048 (2011).

    Google Scholar 

  59. S.H. Oh, R. Black, E. Pomerantseva, J.-H. Lee, L.F. Nazar, Nat. Chem. 4, 1004 (2012).

    Google Scholar 

  60. R. Younesi, M. Hahlin, M. Treskow, J. Scheers, P. Johansson, K. Edstrom, J. Phys. Chem. C 116, 18597 (2012).

    Google Scholar 

  61. V.S. Bryantsev, F. Faglioni, J. Phys. Chem. A 116, 7128 (2012).

    Google Scholar 

  62. K.R. Ryan, L. Trahey, B.J. Ingram, A.K. Burrell, J. Phys. Chem. C 116, 19724 (2012).

    Google Scholar 

  63. A.M. Clover, J. Am. Chem. Soc. 44, 1107 (1922).

    Google Scholar 

  64. D.T. Sawyer, J.S. Valentine, Acc. Chem. Res. 14, 393 (1981).

    Google Scholar 

  65. M.E. Peover, B.S.White, Electrochim. Acta 11, 1061 (1966).

    Google Scholar 

  66. M.V Merritt, D.T. Sawyer, J. Org. Chem. 35, 2157 (1970).

    Google Scholar 

  67. Y.-I. Jang, B.J. Neudecker, N.J. Dudney, Electrochem. Solid-State Lett. 4, A74 (2001).

    Google Scholar 

  68. M.D. Levi, D. Aurbach, J. Phys. Chem. B 101, 4630 (1997).

    Google Scholar 

  69. S.Visco, B. Katz, M.Y Chu, L. De Jonghe, Eds., Symposium on Scalable Energy Storage: Beyond Lithium-Ion (IBM, Almaden Institute, San Jose, CA 2009).

  70. X.-W. Zhang, Y. Li, S.A. Khan, P.S. Fedkiw, J. Electrochem. Soc. 151, A1257 (2004).

    Google Scholar 

  71. B.M.L. Rao, R.W. Francis, H.A. Christopher, J. Electrochem. Soc. 124, 1490 (1977).

    Google Scholar 

  72. S. Megahed, B. Scrosati, Electrochem. Soc. Interface 4, 34 (1995).

    Google Scholar 

  73. C. Monroe, J. Newman, J. Electrochem. Soc. 152, A396 (2005).

    Google Scholar 

  74. P. Stevens, G. Toussaint, G. Caillon, P. Viaud, P. Vinatier, C. Cantau, O. Fichet, C. Sarrazin, M. Mallouki, ECS Trans. 28, 1 (2010).

    Google Scholar 

  75. D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, P. Mustarelli, J. Power Sources 220, 253 (2012).

    Google Scholar 

  76. R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. Engl. 46, 7778 (2007).

    Google Scholar 

  77. B. Kumar, J. Kumar, R. Leese, J.P. Fellner, S.J. Rodrigues, K.M. Abraham, J. Electrochem. Soc. 157, A50 (2010).

    Google Scholar 

  78. M. Rosso, T. Gobron, C. Brissot, J.-N. Chazalviel, S. Lascaud, J. Power Sources 97–98, 804 (2001).

    Google Scholar 

  79. C. Brissot, M. Rosso, J.-N. Chazalviel, S. Lascaud, J. Power Sources 81–82, 925 (1999).

    Google Scholar 

  80. S. Liu, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, J. Yang, J. Electrochem. Soc. 157, A1092 (2010).

    Google Scholar 

  81. S. Liu, H. Wang, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, J.Yang, J. Power Sources 196, 7681 (2011).

    Google Scholar 

  82. T. Zhang, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, Electrochem. Solid-State Lett. 14, A45 (2011).

    Google Scholar 

  83. L. Sannier, R. Bouchet, M. Rosso, J.-M. Tarascon, J. Power Sources 158, 564 (2006).

    Google Scholar 

  84. W. Xu, K. Xu, V.V. Viswanathan, S.A. Towne, J.S. Hardy, J. Xiao, Z. Nie, D. Hu, D. Wang, J.-G. Zhang, J. Power Sources 196, 9631 (2011).

    Google Scholar 

Download references

Acknowledgments

Y.S-H., N.O.-V. and D.G.K. gratefully acknowledge the Robert Bosch Company for a Bosch Energy Research Network Grant, the CERC-CVC US China Clean Energy Research Center-Clean Vehicles Consortium of the Department of Energy (under award number DE PI0000012), and the MRSEC program of the National Science Foundation for their generous support (under award number DMR 0819762). N.O.-V. acknowledges a Marie Curie International Outgoing Fellowship within the seventh European Community Framework Programme (2012). P.G.B. acknowledges the EPSRC for financial support, including the SUPERGEN program. S.A.F. acknowledges financial support by the Austrian Federal Ministry of Economy, Family and Youth and the Austrian National Foundation for Research, Technology and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Kwabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwabi, D.G., Ortiz-Vitoriano, N., Freunberger, S.A. et al. Materials challenges in rechargeable lithium-air batteries. MRS Bulletin 39, 443–452 (2014). https://doi.org/10.1557/mrs.2014.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.87

Navigation