Skip to main content
Log in

Concepts for simulating and understanding materials at the atomic scale

  • Three decades of many-body potentials in materials research
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article discusses some of the many-body potentials used for simulations of processes and energies in materials at the atomic scale, emphasizing their motivation and underlying physical concepts, particularly where these are not entirely empirical. The perspective is somewhat historical and describes the importance of developments of the theory of electrons in solids for the derivation of many-body (or many-atom) potential models. The models include density-dependent pairwise potentials, effective medium and embedded-atom models, and polarizable ion models. As a recent radical departure from approaches derived from the physics of electrons, the development of models based on information theory is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. J.B. Gibson, A.N. Goland, M. Milgram, G.H. Vineyard, Phys. Rev. 120, 1229 (1960).

    Google Scholar 

  2. Materials Research Society, Symposium U: Nuclear Radiation Detection Materials (2011): http://www.mrs.org/s11program-u/.

  3. Materials Research Society, Symposium RR: Fundamental Science of Defects and Microstructure in Advanced Materials for Energy (2011): http://www.mrs.org/s11program-rr/.

  4. Materials Research Society, Symposium XX: Computational Studies of Phase Stability and Microstructure Evolution (2011): http://www.mrs.org/s11program-xx/.

  5. C.A. Coulson, Proc. R. Soc. London, Ser. A 169, 413 (1939).

    Google Scholar 

  6. W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966).

    Google Scholar 

  7. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

    Google Scholar 

  8. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  9. V.I. Anisimov, J. Zaanen, O.K. Andersen, Physical Review B, 44, 943 (1991).

    Google Scholar 

  10. P.N. Keating, Phys. Rev. 145 (2), 637 (1966).

    Google Scholar 

  11. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, UK, 2003).

    Google Scholar 

  12. J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (14), 4 (2007).

    Google Scholar 

  13. A.P. Bartók, M.C. Payne, R. Kondor, G. Csanyi, Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

  14. G. Csanyi, G. Moras, J.R. Kermode, M.C. Payne, A. Mainwood, A. De Vita, Theory of Defects in Semiconductors 104, 193 (2007).

    Google Scholar 

  15. J.C. Phillips, L. Kleinman, Physical Review 116 (2), 287 (1959).

    Google Scholar 

  16. M.L. Cohen, V. Heine, D. Weaire, Solid State Physics (Academic, New York, 1970), vol. 24.

    Google Scholar 

  17. W.A. Harrison, Electronic Structure and the Properties of Solids (W.H. Freeman, San Francisco, 1980).

    Google Scholar 

  18. W.A. Harrison, Phys. Rev. 136, A1107 (1964).

    Google Scholar 

  19. P. Ehrenfest, Z. Phys. 45, 455 (1927).

    Google Scholar 

  20. R.P. Feynman, Phys. Rev. 56, 340 (1939).

    Google Scholar 

  21. H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig and Vienna, 1937).

    Google Scholar 

  22. M.J. Stott, E. Zaremba, Phys. Rev. B 22, 1564 (1980).

    Google Scholar 

  23. J.K. Norskov, N.D. Lang, Phys. Rev. B 21, 2131 (1980).

    Google Scholar 

  24. J.K. Norskov, Phys. Rev. B 26, 2875 (1982).

    Google Scholar 

  25. K.W. Jacobsen, J.K. Norskov, M.J. Puska, Phys. Rev. B 35, 7423 (1987).

    Google Scholar 

  26. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50 (17), 1285 (1983).

    Google Scholar 

  27. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Google Scholar 

  28. J. Friedel, Trans. Met. Soc. AIME 616 (1964).

  29. J. Friedel, in The Physics of Metals, Vol. I—Electrons, J.M. Ziman, Ed. (Cambridge University Press, UK, 1969), pp. 340 – 408.

    Google Scholar 

  30. D.G. Pettifor, Bonding and Structure in Molecules and Solids (Clarendon Press, Oxford, 1995).

    Google Scholar 

  31. F. Cyrot-Lackmann, J. Phys. Chem. Solids 29, 1235 (1968).

    Google Scholar 

  32. F. Ducastelle, J. Phys. 31, 1055 (1970).

    Google Scholar 

  33. R. Haydock, V. Heine, M.J. Kelly, J. Phys. C: Solid State Phys. 5, 2845 (1972).

    Google Scholar 

  34. D.G. Pettifor, D.L. Weaire, The Recursion Method and Its Applications (Springer Verlag, Berlin, 1985).

    Google Scholar 

  35. J. Inoue, Y. Ohta, J. Phys. C: Solid State Phys. 20 (13), 1947 (1987).

    Google Scholar 

  36. S. Glanville, A.T. Paxton, M.W. Finnis, J. Phys. F: Met. Phys. 18, 693 (1988).

    Google Scholar 

  37. C.M.M. Nex, Comput. Phys. Commun. 53 (1–3), 141 (1989).

    Google Scholar 

  38. J. Inoue, A. Okada, Y. Ohta, J. Phys. Condens. Matter 5 (39), L465 (1993).

    Google Scholar 

  39. S. Obata, K. Masuda Jindo, Comput. Mater. Sci. 6 (3), 197 (1996).

    Google Scholar 

  40. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Google Scholar 

  41. F. Ercolessi, E. Tosatti, M. Parrinello, Phys. Rev. Lett. 57, 719 (1986).

    Google Scholar 

  42. G. Allan, M. Lannoo, J. Phys. Chem. Solids 37, 699 (1976).

    Google Scholar 

  43. D. Nguyen-Manh, V. Vitek, A.P. Horsfield, Prog. Mater Sci. 52 (2–3), 255 (2007).

    Google Scholar 

  44. R. Drautz, D.G. Pettifor, Phys. Rev. B 74 (17), 174117 (2006).

    Google Scholar 

  45. B.G. Dick, A.W. Overhauser, Phys. Rev. 112, 90 (1958).

    Google Scholar 

  46. C.S. Zha, H.K. Mao, R.J. Hemley, Proc. Natl. Acad. Sci. U.S.A. 97 (25), 13494 (2000).

    Google Scholar 

  47. N.A. Marks, S. Fabris, M.W. Finnis, Solid-State Chemistry of Inorganic Materials II 547, 197 (1999).

    Google Scholar 

  48. N.A. Marks, M.W. Finnis, J.H. Harding, N.C. Pyper, J. Chem. Phys. 114, 4406 (2001).

    Google Scholar 

  49. M. Wilson, Y.M. Huang, M. Exner, M.W. Finnis, Phys. Rev. B 54, 15683 (1996).

    Google Scholar 

  50. P. Tangney, S. Scandolo, J. Chem. Phys. 117 (19), 8898 (2002).

    Google Scholar 

  51. S. Jahn, P.A. Madden, M. Wilson, Phys. Rev. B 74 (2), 024112 (2006).

    Google Scholar 

  52. F.H. Streitz, J.W. Mintmire, J. Adhes. Sci. Technol. 8, 853 (1994).

    Google Scholar 

  53. S.L. Frederiksen, K.W. Jacobsen, K.S. Brown, J.P. Sethna, Phys. Rev. Lett. 93, 165501 (2004).

    Google Scholar 

  54. D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, UK, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Finnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finnis, M.W. Concepts for simulating and understanding materials at the atomic scale. MRS Bulletin 37, 477–484 (2012). https://doi.org/10.1557/mrs.2012.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.92

Navigation