Skip to main content
Log in

Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Effective degradation of organic pollutants in wastewater is of great importance to the environment and human society. TiO2-based electrospun nanofibrous materials combining the properties of the large specific surface area, high aspect ratio, tunable compositions and structures, as well as easy to recycle, show great promise for the efficient removal of organic pollutants. In this Prospective paper, the recent progress in the degradation of organic water contaminants over visible-light-responsive TiO2-based nanofibrous materials is summarized, with emphasis on the strategies for improving the visible-light photocatalytic activity of TiO2-based nanofibrous materials. Finally, the current challenges and future outlook in this field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Table I

Similar content being viewed by others

References

  1. S. Garcia and E. Brillas: Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C, Photochem. 31, 1 (2017).

    Article  CAS  Google Scholar 

  2. R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. von Gunten, and B. Wehrli: Global water pollution and human health. Annu. Rev. Env. Resour. 35, 109 (2010).

    Article  Google Scholar 

  3. T. Robinson, G. McMullan, R. Marchant, and P. Nigam: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247 (2001).

    Article  CAS  Google Scholar 

  4. R. Loos, G. Locoro, S. Comero, S. Contini, D. Schwesig, F. Werres, P. Balsaa, O. Gans, S. Weiss, L. Blaha, M. Bolchi, and B.M. Gawlik: Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 44, 4115 (2010).

    Article  CAS  Google Scholar 

  5. M.M. Khin, A.S. Nair, V.J. Bahu, R. Murugan, and S. Ramakrishna: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075 (2012).

    Article  CAS  Google Scholar 

  6. M. Klavarioti, D. Mantzavinos, and D. Kassinos: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35, 402 (2009).

    Article  CAS  Google Scholar 

  7. P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, and S. Kalagara: Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 91, 94 (2016).

    Article  CAS  Google Scholar 

  8. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O′Shea, M.H. Entezari, and D.D. Dionysiou: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331 (2012).

    Article  CAS  Google Scholar 

  9. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, and Y. He: An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128 (2015).

    Article  CAS  Google Scholar 

  10. X. Wang, Z. Li, J. Shi, and Y. Yu: One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346 (2014).

    Article  CAS  Google Scholar 

  11. K. Lee, A. Mazare, and P. Schmuki: One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385 (2014).

    Article  CAS  Google Scholar 

  12. N. Wang, Y. Si, N. Wang, G. Sun, M. El-Newehy, S.S. Al-Deyab, and B. Ding: Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Sep. Purif. Technol. 126, 44 (2014).

    Article  CAS  Google Scholar 

  13. B. Ding, J. Gong, J. Kim, and S. Shiratori: Polyoxometalate nanotubes from layer-by-layer coating and thermal removal of electrospun nanofibres. Nanotechnology 16, 785 (2005).

    Article  CAS  Google Scholar 

  14. Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, and B. Ding: Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512 (2016).

    Article  CAS  Google Scholar 

  15. X. Zhang, X. Li, C. Shao, J. Li, M. Zhang, P. Zhang, K. Wang, N. Lu, and Y. Liu: One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J. Hazard. Mater. 260, 892 (2013).

    Article  CAS  Google Scholar 

  16. B. Ding, C. Li, S. Fujita, and S. Shiratori: Layer-by-layer self-assembled tubular films containing polyoxometalate on electrospun nanofibers. Colloids Surf. A 284, 257 (2006).

    Article  CAS  Google Scholar 

  17. S.M. Boyer, J. Liu, S. Zhang, M.I. Ehrlich, D.L. McCarthy, L. Tong, J.B. DeCoste, W.E. Bernier, and W.E. Jones Jr.: The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. J. Photochem. Photobiol. A Chem. 329, 46 (2016).

    Article  CAS  Google Scholar 

  18. Z. Liu, Y. Miao, M. Liu, Q. Ding, W.W. Tjiu, X. Cui, and T. Liu: Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. J. Colloid Interface Sci. 424, 49 (2014).

    Article  CAS  Google Scholar 

  19. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).

    Article  CAS  Google Scholar 

  20. M. Gopal, W.J.M. Chan, and L.C. DeJonghe: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001 (1997).

    Article  CAS  Google Scholar 

  21. G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers, and J.M. Seakins: The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 26, 57 (1995).

    Article  CAS  Google Scholar 

  22. T.P. Feist and P.K. Davies: The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem. 101, 275 (1992).

    Article  CAS  Google Scholar 

  23. W. Wang, M. Tadé, and Z. Shao: Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog. Mater. Sci. 92, 33 (2018).

    Article  CAS  Google Scholar 

  24. K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, and R. Krishnan-Ayer: Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C, Photochem. Rev. 9, 171 (2008).

    Article  CAS  Google Scholar 

  25. T. Tachikawa, M. Fujitsuka, and T. Majima: Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 5259 (2007).

    Article  CAS  Google Scholar 

  26. X. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).

    Article  CAS  Google Scholar 

  27. A.K. Alves, F.A. Berutti, and C.P. Bergmann: Visible and UV photocatalytic characterization of Sn-TiO2 electrospun fiber. Catal. Today 208, 7 (2013).

    Article  CAS  Google Scholar 

  28. D. Ma, Y. Xin, M. Gao, and J. Wu: Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl. Catal. B Environ. 147, 49 (2014).

    Article  CAS  Google Scholar 

  29. M. Zhang, C. Shao, Z. Guo, Z. Zhang, J. Mu, T. Cao, and Y. Liu: Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl. Mater. Interfaces 3, 369 (2011).

    Article  CAS  Google Scholar 

  30. D. Baiyila, X. Wang, X. Li, B. Sharileaodu, X. Li, L. Xu, Z. Liu, L. Duan, and J. Liu: Electrospun TiO2 nanofibers integrating space-separated magnetic nanoparticles and heterostructures for recoverable and efficient photocatalyst. J. Mater. Chem. A 2, 12304 (2014).

    Article  CAS  Google Scholar 

  31. M. Shang, W. Wang, L. Zhang, S. Sun, L. Wang, and L. Zhou: 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C 113, 14727 (2009).

    Article  CAS  Google Scholar 

  32. L. Zhang, Y. Li, Q. Zhang, and H. Wang: Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 15, 5986 (2013).

    Article  CAS  Google Scholar 

  33. M. Misra, N. Singh, and R.K. Gupta: Enhanced visible-light-driven photocatalytic activity of Au@Ag core-shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds. Catal. Sci. Technol. 7, 570 (2017).

    Article  CAS  Google Scholar 

  34. X. Chen and S. Mao: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  35. P. Shahini, A.A. Ashkarran, H. Hamidinezhad, and A. Bahari: The role of iron functionalization on the visible-light photocatalytic performance of TiO2 nanofibers suitable for environmental applications. Res. Chem. Intermed. 42, 8273 (2016).

    Article  CAS  Google Scholar 

  36. Z. Zhang, C. Shao, L. Zhang, X. Li, and Y. Liu: Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci. 351, 57 (2010).

    Article  CAS  Google Scholar 

  37. F. Ruggieri, D.D. Camillo, L. Maccarone, S. Santucci, and L. Lozzi: Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G. J. Nanopart. Res. 15, 1982 (2013).

    Article  CAS  Google Scholar 

  38. A. Worayingyong, S. Sang-urai, M.F. Smith, S. Maensiri, and S. Seraphin: Effects of cerium dopant concentration on structural properties and photocatalytic activity of electrospun Ce-doped TiO2 nanofibers. Appl. Phys. A 117, 1191 (2014).

    Article  CAS  Google Scholar 

  39. J. Choi, P. Sudhagar, P. Lakshmipathiraj, J.W. Lee, A. Devadoss, S. Lee, T. Song, S. Hong, S. Eito, C. Terashima, T.H. Han, J.K. Kang, A. Fujishima, Y.S. Kang, and U. Paik: Three-dimensional Gd-doped TiO2 fibrous photoelectrodes for efficient visible light-driven photocatalytic performance. RSC Adv. 4, 11750 (2014).

    Article  CAS  Google Scholar 

  40. D.Y. Lee, B.Y. Kim, N.I. Cho, and Y.J. Oh: Electrospun Er3+-TiO2 nanofibrous films as visible light induced photocatalysts. Curr. Appl. Phys. 11, S324 (2011).

    Article  Google Scholar 

  41. J. Xu, W. Wang, M. Shang, E. Gao, Z. Zhang, and J. Ren: Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. J. Hazard. Mater. 196, 426 (2011).

    Article  CAS  Google Scholar 

  42. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  43. D.D. Camillo, F. Ruggieri, S. Santucci, and L. Lozzi: N-doped TiO2 nanofibers deposited by electrospinning. J. Phys. Chem. C 116, 18427 (2012).

    Article  CAS  Google Scholar 

  44. Y.R. Dai and L.F. Yin: Enhancement of photocatalytic activity for electrospun C@Ti/anatase fibers by lattice distortion under anisotropic stress. Catal. Sci. Technol. 4, 456 (2014).

    Article  CAS  Google Scholar 

  45. H. Li, W. Zhang, S. Huang, and W. Pan: Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO2 nanofibers. Nanoscale 4, 801 (2012).

    Article  CAS  Google Scholar 

  46. Q. Yu, X. Jin, S. Li, L. Wang, and K. Liang: The photocatalytic properties of Fe3+ and N co-doped TiO2 micro/nanofiber film for dye waste water decomposition. Adv. Mater. Res. 356-360, 853 (2012).

    Google Scholar 

  47. Q. Zhang, S. Zhou, S.F. Fu, and X.Z. Wang: Tetranitrophthalocyanine zinc/TiO2 nanofibers organic-inorganic heterostructures with enhanced visible photocatalytic activity. Nano 12, 1750117 (2017).

    Article  CAS  Google Scholar 

  48. C. Su, C. Shao, and Y. Liu: Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. J. Colloid Interface Sci. 359, 220 (2011).

    Article  CAS  Google Scholar 

  49. H. Li, Y. Zhu, H. Cao, X. Yang, and C. Li: Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fiber. Mater. Res. Bull. 48, 232 (2013).

    Article  CAS  Google Scholar 

  50. V. Likodimos: Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl. Catal. B Environ. 230, 269 (2018).

    Article  CAS  Google Scholar 

  51. H. Yu, R. Shi, Y. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, and T. Zhang: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454 (2016).

    Article  CAS  Google Scholar 

  52. S. Hu, Z. Wei, Q. Chang, A. Trinchi, and J. Yang: A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci. 378, 402 (2016).

    Article  CAS  Google Scholar 

  53. H. Wan, N. Wang, J. Yang, Y. Si, K. Chen, B. Ding, G. Sun, M. El-Newehy, S.S. Al-Deyab, and J. Yu: Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J. Colloid Interface Sci. 417, 18 (2014).

    Article  CAS  Google Scholar 

  54. J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, and Y. Liu: Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 4, 424 (2012).

    Article  CAS  Google Scholar 

  55. X. Li, H. Lin, X. Chen, H. Niu, J. Liu, T. Zhang, and F. Qu: Dendritic α-Fe2O3/TiO2 nanocomposites with improved visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18, 9176 (2016).

    Article  CAS  Google Scholar 

  56. F. Tian, D. Hou, F. Hu, K. Xie, X. Qiao, and D. Li: Porous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 391, 295 (2017).

    Article  CAS  Google Scholar 

  57. C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, and Q. Li: In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 8, 1199 (2015).

    Article  CAS  Google Scholar 

  58. C. Su, L. Liu, M. Zhang, Y. Zhang, and C. Shao: Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 14, 3989 (2012).

    Article  CAS  Google Scholar 

  59. Z. Yang, J. Lu, W. Ye, C. Yu, and Y. Chang: Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity. Appl. Surf. Sci. 392, 472 (2017).

    Article  CAS  Google Scholar 

  60. P. Shahini and A.A. Ashkarran: Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst. Colloids Surf. A 537, 155 (2018).

    Article  CAS  Google Scholar 

  61. Y. Wang, L. Liu, Y. Huang, X. Li, X. Cao, L. Xu, C. Meng, Z. Wang, and W. Zhu: Ag0.35V2O5/TiO2 branched nanoheterostructures: facile fabrication and efficient visible light photocatalytic activity. Mater. Lett. 128, 358 (2014).

    Article  CAS  Google Scholar 

  62. B. Li, Y. Hao, B. Zhang, X. Shao, and L. Hu: A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofiber. Appl. Catal. A Gen. 531, 1 (2017).

    Article  CAS  Google Scholar 

  63. X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin, and F. Qu: The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J. Colloid Interface Sci. 452, 89 (2015).

    Article  CAS  Google Scholar 

  64. L. Zhang, Q. Zhang, H. Xie, J. Guo, H. Lyu, Y. Li, Z. Sun, H. Wang, and Z. Guo: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B Environ. 201, 470 (2017).

    Article  CAS  Google Scholar 

  65. C. Liao, Z. Ma, G. Dong, and J. Qiu: BiOI nanosheets decorated TiO2 nanofiber: tailoring water purification performance of photocatalyst in structural and photo-responsivity aspects. Appl. Surf. Sci. 314, 481 (2014).

    Article  CAS  Google Scholar 

  66. Y. Wang, Y.R. Su, L. Qiao, L.X. Liu, Q. Su, C.Q. Zhu, and X.Q. Liu: Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B. Nanotechnology 22, 225702 (2011).

    Article  CAS  Google Scholar 

  67. Y. Lv, Z. Xu, S. Irie, and K. Nakane: Fabrication of PdOx loaded highly mesoporous WO3/TiO2 hybrid nanofibers by stepwise pore-generation for enhanced photocatalytic performance. Mol. Catal. 438, 173 (2017).

    Article  CAS  Google Scholar 

  68. Y. Wang, J. Zhang, L. Liu, C. Zhu, X. Liu, and Q. Su: Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning. Mater. Lett. 75, 95 (2012).

    Article  CAS  Google Scholar 

  69. G. Yang, Q. Zhang, W. Chang, and W. Yan: Fabrication of Cd1−xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J. Alloy. Compd. 580, 29 (2013).

    Article  CAS  Google Scholar 

  70. W. Chang, X. Ren, G. Yang, W. Yan, and R. Sun: Synthesis and photocatalytic activity of ZnxCd1−xS/TiO2 heterostructures nanofibre prepared by combining electrospinning and hydrothermal method. S. Afr. J. Chem. 68, 138 (2015).

    Article  CAS  Google Scholar 

  71. Z. Zhang, C. Shao, X. Li, Y. Sun, M. Zhang, J. Mu, P. Zhang, Z. Guo, and Y. Liu: Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5, 606 (2013).

    Article  CAS  Google Scholar 

  72. A. Kongkanand, R.M. Domínguez, and P.V. Kamat: Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 7, 676 (2007).

    Article  CAS  Google Scholar 

  73. H. Zhao, X. Liu, Z. Cao, Y. Zhan, X. Shi, Y. Yang, J. Zhou, and J. Xu: Adsorption behavior and mechanism of chloramphenicols sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 310, 235 (2016).

    Article  CAS  Google Scholar 

  74. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, and Y. Liu: TiO2@carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties. Nanoscale 3, 2943 (2011).

    Article  CAS  Google Scholar 

  75. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Sun, and Y. Liu: Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. J. Mater. Chem. 21, 17746 (2011).

    Article  CAS  Google Scholar 

  76. Z. Zhao, Z. Li, and Z. Zou: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746 (2011).

    Article  CAS  Google Scholar 

  77. Y. Noguchi, T. Goto, M. Miyayama, A. Hoshikawa, and T. Kamiyama: Ferroelectric distortion and electronic structure in Bi4Ti3O12. J. Electroceram. 21, 49 (2008).

    Article  CAS  Google Scholar 

  78. S. Luo, J. Chen, Z. Huang, C. Liu, and M. Fang: Controllable synthesis of titania-supported bismuth oxyiodide heterostructured nanofibers with highly exposed (110) bismuth oxyiodide facets for enhanced photocatalytic activity. ChemCatChem 8, 3780 (2016).

    Article  CAS  Google Scholar 

  79. Y. Wang, J. Sunarso, B. Zhao, C. Ge, and G. Chen: One-dimensional BiOBr nanosheets/TiO2 nanofibers composite: controllable synthesis and enhanced visible photocatalytic activity. Ceram. Int. 43, 15769 (2017).

    Article  CAS  Google Scholar 

  80. Y.-J. Li, T.-P. Cao, C.-L. Shao, and C.-H. Wang: Preparation and photocatalytic properties of γ-Bi2O3/TiO2 composite fibers. J. Inorg. Mater. 27, 687 (2012).

    Article  CAS  Google Scholar 

  81. T. Cao, Y. Li, C. Wang, Z. Zhang, M. Zhang, C. Shao, and Y. Liu: Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. J. Mater. Chem. 21, 6922 (2011).

    Article  CAS  Google Scholar 

  82. D. Zhou, H. Zhang, Y. Tu, Y. Tian, Y. Cai, Z. Hu, and X. Zhu: In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res. Lett. 11, 193 (2016).

    Article  CAS  Google Scholar 

  83. Z. Guo, P. Li, H. Che, G. Wang, C. Wu, X. Zhang, and J. Mu: One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity. Ceram. Int. 42, 4517 (2016).

    Article  CAS  Google Scholar 

  84. M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang, and Y. Liu: One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14, 605 (2012).

    Article  CAS  Google Scholar 

  85. Y. Yang, Y. Liu, J. Wei, C. Pan, R. Xiong, and J. Shi: Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv. 4, 31941 (2014).

    Article  CAS  Google Scholar 

  86. R. Zhang, X. Wang, J. Song, Y. Si, X. Zhuang, J. Yu, and B. Ding: In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 3, 22136 (2015).

    Article  CAS  Google Scholar 

  87. H. Kokubo, B. Ding, T. Naka, H. Tsuchihira, and S. Shiratori: Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells. Nanotechnology 18, 165604 (2007).

    Article  CAS  Google Scholar 

  88. M. Kanehata, B. Ding, and S. Shiratori: Nanoporous ultra-high specific surface inorganic fibres. Nanotechnology 18, 315602 (2007).

    Article  CAS  Google Scholar 

  89. Y. Zhang, S. Liu, Z. Xiu, Q. Lu, H. Sun, and G. Liu: TiO2/BiOI heterostructured nanofibers: electrospinning-solvothermal two-step synthesis and visible-light photocatalytic performance investigation. J. Nanopart. Res. 16, 2375 (2014).

    Article  CAS  Google Scholar 

  90. J. Xie, Y. Yang, H. He, D. Cheng, M. Mao, Q. Jiang, L. Song, and J. Xiong: Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci. 355, 921 (2015).

    Article  CAS  Google Scholar 

  91. Z. Su, H. Li, P. Chen, S. Hu, and Y. Yan: Novel heterostructured InN/TiO2 submicron fibers designed for high performance visible-light-driven photocatalysis. Catal. Sci. Technol. 7, 5105 (2017).

    Article  CAS  Google Scholar 

  92. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, and H. Wang: Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B, Environ. 217, 388 (2017).

    Article  CAS  Google Scholar 

  93. S.P. Adhikari, G.P. Awasthi, H.J. Kim, C.H. Park, and C.S. Kim: Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32, 6163 (2016).

    Article  CAS  Google Scholar 

  94. C. Wang, L. Hu, B. Chai, J. Yan, and J. Li: Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light. Appl. Surf. Sci. 430, 243 (2018).

    Article  CAS  Google Scholar 

  95. X. Zhou, C. Shao, X. Li, X. Wang, X. Guo, and Y. Liu: Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. J. Hazard. Mater. 344, 113 (2018).

    Article  CAS  Google Scholar 

  96. J. Song, X. Wang, J. Yan, J. Yu, G. Sun, and B. Ding: Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7, 1636 (2017).

    Article  CAS  Google Scholar 

  97. H. Shan, X. Wang, F. Shi, J. Yan, J. Yu, and B. Ding: Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9, 18966 (2017).

    Article  CAS  Google Scholar 

  98. Y. Si, X. Mao, H. Zheng, J. Yu, and B. Ding: Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5, 6027 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-03-E00024), the Program of Shanghai Academic Research Leader (No. 18XD1400200), and the Fundamental Research Funds for the Central Universities (No. 18D310109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Si, Y., Yu, J. et al. Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation. MRS Communications 8, 765–781 (2018). https://doi.org/10.1557/mrc.2018.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.139

Navigation