Skip to main content
Log in

Dynamic bioengineered hydrogels as scaffolds for advanced stem cell and organoid culture

  • Biomaterials for 3D Cell Biology Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Bioengineered hydrogels enable systematic variation of mechanical and biochemical properties, resulting in the identification of optimal in vitro three-dimensional culture conditions for individual cell types. As the scientific community attempts to mimic and study more complex biologic processes, hydrogel design has become multi-faceted. To mimic organ and tissue heterogeneity in terms of spatial arrangement and temporal changes, hydrogels with spatiotemporal control over mechanical and biochemical properties are needed. In this prospective article, we present studies that focus on the development of hydrogels with dynamic mechanical and biochemical properties, highlighting the discoveries made using these scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Nowak, U. Freudenberg, M.V. Tsurkan, C. Werner, and K.R. Levental: Modular GAG-matrices to promote mammary epithelial morphogenesis in vitro. Biomaterials 112, 20 (2017).

    Article  CAS  Google Scholar 

  2. A. Ranga, M. Girgin, A. Meinhardt, D. Eberle, M. Caiazzo, E.M. Tanaka, and M.P. Lutolf: Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl. Acad. Sci. U.S.A. 113, E6831 (2016).

    Article  CAS  Google Scholar 

  3. E. Moeendarbary, I.P. Weber, G.K. Sheridan, D.E. Koser, S. Soleman, B. Haenzi, E.J. Bradbury, J. Fawcett, and K. Franze: The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 8, 14787 (2017).

    Article  CAS  Google Scholar 

  4. T. Mammoto, A. Mammoto, and D.E. Ingber: Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29, 27 (2013).

    Article  CAS  Google Scholar 

  5. C.-P. Heisenberg and Y. Bellaïche: Forces in tissue morphogenesis and patterning. Cell 153, 948 (2013).

    Article  CAS  Google Scholar 

  6. N. Bouchonville, M. Meyer, C. Gaude, E. Gay, D. Ratel, A. Nicolas, C.A. Reinhart-King, S.S. Margulies, M. Dembo, D. Boettiger, D.A. Hammer, V.M. Weaver, Y. Shi, and S.P. Robinson: AFM mapping of the elastic properties of brain tissue reveals kPa μm−1 gradients of rigidity. Soft Mat. 12, 6232 (2016).

    Article  CAS  Google Scholar 

  7. S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, and G.A. Holzapfel: Mechanical characterization of human brain tissue. Acta Biomater. 48, 319 (2017).

    Article  CAS  Google Scholar 

  8. J.Y. Rho, R.B. Ashman, and C.H. Turner: Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J. Biomech. 26, 111 (1993).

    Article  CAS  Google Scholar 

  9. E. Hoenig, U. Leicht, T. Winkler, G. Mielke, K. Beck, F. Peters, A.F. Schilling, and M.M. Morlock: Mechanical properties of native and tissue-engineered cartilage depend on carrier permeability: a bioreactor study. Tissue Eng. A 19, 1534 (2013).

    Article  CAS  Google Scholar 

  10. L.E. Bilston: Brain Tissue Mechanical Properties in Biological and Medical Physics, Biomedical Engineering (Springer, New York, USA, 2011, vol. 69).

  11. A.J. Engler, S. Sen, H.L. Sweeney, and D.E. Discher: Matrix elasticity directs stem cell lineage specification. Cell 126, 677 (2006).

    Article  CAS  Google Scholar 

  12. B. Trappmann, J.E. Gautrot, J.T. Connelly, D.G.T. Strange, Y. Li, M.L. Oyen, M.A. Cohen Stuart, H. Boehm, B. Li, V. Vogel, J.P. Spatz, F.M. Watt, and W.T.S. Huck: Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642 (2012).

    Article  CAS  Google Scholar 

  13. J.H. Wen, L.G. Vincent, A. Fuhrmann, Y.S. Choi, K.C. Hribar, H. Taylor-Weiner, S. Chen, and A.J. Engler: Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13, 979 (2014).

    Article  CAS  Google Scholar 

  14. N.D. Leipzig and M.S. Shoichet: The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 6867 (2009).

    Article  CAS  Google Scholar 

  15. J. You, S.-A. Park, D.-S. Shin, D. Patel, V.K. Raghunathan, M. Kim, C.J. Murphy, G. Tae, and A. Revzin: Characterizing the effects of heparin gel stiffness on function of primary hepatocytes. Tissue Eng. A 19, 2655 (2013).

    Article  CAS  Google Scholar 

  16. N. Mittal, F. Tasnim, C. Yue, Y. Qu, D. Phan, Y. Choudhury, M.-H. Tan, and H. Yu: Substrate stiffness modulates the maturation of human pluripotent stem-cell-derived hepatocytes. ACS Biomater. Sci. Eng. 2, 1649 (2016).

    Article  CAS  Google Scholar 

  17. A. Nava, E. Mazza, M. Furrer, P. Villiger, and W.H. Reinhart: In vivo mechanical characterization of human liver. Med. Image Anal. 12, 203 (2008).

    Article  CAS  Google Scholar 

  18. L. Huwart, F. Peeters, R. Sinkus, L. Annet, N. Salameh, L.C. ter Beek, Y. Horsmans, and B.E. Van Beers: Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed.. 19, 173 (2006).

    Article  Google Scholar 

  19. D. Hanjaya-Putra, J. Yee, D. Ceci, R. Truitt, D. Yee, and S. Gerecht: Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J. Cell. Mol. Med. 14, 2436 (2010).

    Article  Google Scholar 

  20. S.R. Caliari, S.L. Vega, M. Kwon, E.M. Soulas, and J.A. Burdick: Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103, 314 (2016).

    Article  CAS  Google Scholar 

  21. S. Khetan, M. Guvendiren, W.R. Legant, D.M. Cohen, C.S. Chen, and J.A. Burdick: Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458 (2013).

    Article  CAS  Google Scholar 

  22. N. Huebsch, P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali, S.A. Bencherif, J. Rivera-feliciano, and D.J. Mooney: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518 (2010).

    Article  CAS  Google Scholar 

  23. N. Gjorevski, N. Sachs, A. Manfrin, S. Giger, M.E. Bragina, P. Ordóñez-Morán, H. Clevers, and M.P. Lutolf: Designer matrices for intestinal stem cell and organoid culture. Nat. Publ. Gr. 539, 560 (2016).

    CAS  Google Scholar 

  24. S.R. Caliari, M. Perepelyuk, E.M. Soulas, G.Y. Lee, R.G. Wells, and J.A. Burdick: Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression. Integr. Biol. 8, 720 (2016).

    Article  Google Scholar 

  25. N. Boehnke, C. Cam, E. Bat, T. Segura, and H.D. Maynard: Imine hydrogels with tunable degradability for tissue engineering. Biomacromolecules 16, 2101 (2015).

    Article  CAS  Google Scholar 

  26. P.M. Kharkar, A.M. Kloxin, and K.L. Kiick: Dually degradable click hydrogels for controlled degradation and protein release. J. Mater. Chem. B, Mater. Biol. Med. 2, 5511 (2014).

    Article  CAS  Google Scholar 

  27. J.L. Young and A.J. Engler: Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32, 1002 (2011).

    Article  CAS  Google Scholar 

  28. C. Yang, M.W. Tibbitt, L. Basta, and K.S. Anseth: Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645 (2014).

    Article  CAS  Google Scholar 

  29. M. Guvendiren and J.A. Burdick: Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).

    Article  Google Scholar 

  30. R.S. Stowers, S.C. Allen, and L.J. Suggs: Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl. Acad. Sci. U.S.A. 112, 1953 (2015).

    Article  CAS  Google Scholar 

  31. A.A. Abdeen, J. Lee, N.A. Bharadwaj, R.H. Ewoldt, and K.A. Kilian: Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv. Healthc. Mater. 5, 2536 (2016).

    Article  CAS  Google Scholar 

  32. U. Ubaidillah, J. Sutrisno, A. Purwanto, and S.A. Mazlan: Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv. Eng. Mater. 17, 563 (2015).

    Article  CAS  Google Scholar 

  33. T. Mitsumata, S. Ohori, A. Honda, and M. Kawai: Magnetism and viscoelasticity of magnetic elastomers with wide range modulation of dynamic modulus. Soft Matter 9, 904 (2013).

  34. M. Mayer, R. Rabindranath, J. Boerner, E. Hoerner, A. Bentz, J. Salgado, H. Han, H. Boese, J. Probst, M. Shamonin, G.J. Monkman, and G. Schlunck: Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata. PLoS ONE 8, e76196 (2013).

    Article  CAS  Google Scholar 

  35. Y. Lei and D.V. Schaffer: A fully defined and scalable 3D culture system for human stem cell expansion and differentiation. Proc. Natl. Acad. Sci. U. S. A. 110, E5039 (2013).

    Article  CAS  Google Scholar 

  36. Q. Li, H. Lin, O. Wang, X. Qiu, S. Kidambi, L.P. Deleyrolle, B.A. Reynolds, and Y. Lei: Scalable production of glioblastoma tumor-initiating cells in 3 dimension thermoreversible hydrogels. Sci. Rep. 6, 31915 (2016).

    Article  CAS  Google Scholar 

  37. M.O. Cho, Z. Li, H.-E. Shim, I.-S. Cho, M. Nurunnabi, H. Park, K.Y. Lee, S.-H. Moon, K.-S. Kim, S.-W. Kang, and K.M. Huh: Bioinspired tuning of glycol chitosan for 3D cell culture. NPG Asia Mater. 8, e309 (2016).

    Article  CAS  Google Scholar 

  38. H. Wolfenson, G. Meacci, S. Liu, M.R. Stachowiak, T. Iskratsch, S. Ghassemi, P. Roca-Cusachs, B. O’Shaughnessy, J. Hone, and M.P. Sheetz: Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat. Cell Biol. 18, 33 (2015).

    Article  Google Scholar 

  39. G. Meacci, H. Wolfenson, S. Liu, M.R. Stachowiak, T. Iskratsch, A. Mathur, S. Ghassemi, N. Gauthier, E. Tabdanov, J. Lohner, A. Gondarenko, A.C. Chander, P. Roca-Cusachs, B. O’Shaughnessy, J. Hone, and M.P. Sheetz: α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Mol. Biol. Cell 27, 3471 (2016).

    Article  CAS  Google Scholar 

  40. M. Whang and J. Kim: Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds. Tissue Eng. Regen. Med. 13, 126 (2016).

    Article  CAS  Google Scholar 

  41. X. Tingting, L. Wanqian, and Y. Li: A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J. Biomed. Mater. Res. A 105, 1799 (2017).

    Article  Google Scholar 

  42. J.R. Tse and A.J. Engler: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6, e15978 (2011).

    Article  CAS  Google Scholar 

  43. C. Yang, F.W. DelRio, H. Ma, A.R. Killaars, L.P. Basta, K.A. Kyburz, and K.S. Anseth: Spatially patterned matrix elasticity directs stem cell fate. Proc. Natl. Acad. Sci. U.S.A. 113, E4439 (2016).

    Article  CAS  Google Scholar 

  44. M.P. Lutolf, J.L. Lauer-Fields, H.G. Schmoekel, A.T. Metters, F.E. Weber, G.B. Fields, and J.A. Hubbell: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. U.S.A. 100, 5413 (2003).

    Article  CAS  Google Scholar 

  45. S.A. Fisher, P.N. Anandakumaran, S.C. Owen, and M.S. Shoichet: Tuning the microenvironment: click-crosslinked hyaluronic acid-based hydrogels provide a platform for studying breast cancer cell invasion. Adv. Funct. Mater. 25, 7163 (2015).

    Article  CAS  Google Scholar 

  46. K.M. Schultz, K.A. Kyburz, and K.S. Anseth: Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc. Natl. Acad. Sci. U.S.A. 112, E3757 (2015).

    Article  CAS  Google Scholar 

  47. X. Tong and F. Yang: Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater. 28, 7257 (2016).

    Article  CAS  Google Scholar 

  48. Z. Liu and L. Bilston: On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37, 191 (2000).

    CAS  Google Scholar 

  49. M. Geerligs, G.W.M. Peters, P.A.J. Ackermans, C.W.J. Oomens, and F.P.T. Baaijens: Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45, 677 (2008).

    Article  Google Scholar 

  50. S.J. McDonald, P.C. Dooley, A.C. McDonald, J.A. Schuijers, A.R. Ward, and B.L. Grills: Early fracture callus displays smooth muscle-like viscoelastic properties ex vivo: implications for fracture healing. J. Orthop. Res. 27, 1508 (2009).

    Article  Google Scholar 

  51. O. Chaudhuri, L. Gu, M. Darnell, D. Klumpers, S.A. Bencherif, J.C. Weaver, N. Huebsch, and D.J. Mooney: Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015).

    Article  CAS  Google Scholar 

  52. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif, J.C. Weaver, N. Huebsch, H.-P. Lee, E. Lippens, G.N. Duda, and D.J. Mooney: Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326 (2015).

    Article  Google Scholar 

  53. J. Tao, H. Wang, Q. Lin, H. Shen, and L.S. Li: Quantum-dot-based light-emitting diodes with improved brightness and stability by using sulfuric acid-treated PEDOT:PSS as efficient hole injection layer. IEEE Trans. Nanotechnol. 14, 57 (2015).

    Article  Google Scholar 

  54. J.A. Burdick and G.D. Prestwich: Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41 (2011).

    Article  CAS  Google Scholar 

  55. S.A. Fisher, R.Y. Tam, and M.S. Shoichet: Tissue mimetics: engineered hydrogel matrices provide biomimetic environments for cell growth. Tissue Eng. A 20, 895 (2014).

    Article  Google Scholar 

  56. T. Nie, R.E. Akins, and K.L. Kiick: Production of heparin-containing hydrogels for modulating cell responses. Acta Biomater.. 5, 865 (2009).

    Article  CAS  Google Scholar 

  57. H.H. Nguyen, B. Payré, J. Fitremann, N. Lauth-De Viguerie, and J.D. Marty: Thermoresponsive properties of PNIPAM-based hydrogels: effect of molecular architecture and embedded gold nanoparticles. Langmuir 31, 4761 (2015).

    Article  CAS  Google Scholar 

  58. K. Chwalek, M.V. Tsurkan, U. Freudenberg, and C. Werner: Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci. Rep. 4, 4414 (2014).

    Article  Google Scholar 

  59. M.H. Hettiaratchi, C. Chou, N. Servies, J.M. Smeekens, A. Cheng, C. Esancy, R. Wu, T.C. McDevitt, R.E. Guldberg, and L. Krishnan: Competitive protein binding influences heparin-based modulation of spatial growth factor delivery for bone regeneration. Tissue Eng. A 23, 683 (2017).

    Article  CAS  Google Scholar 

  60. M.H. Hettiaratchi, T. Miller, J.S. Temenoff, R.E. Guldberg, and T.C. McDevitt: Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials 35, 7228 (2014).

    Article  CAS  Google Scholar 

  61. J.M. Chalovich and E. Eisenberg: Heparin mimicking polymer promotes myogenic differentiation of muscle progenitor cells. Biophys. Chem. 257, 2432 (2005).

    Google Scholar 

  62. K.L. Christman, V. Vázquez-Dorbatt, E. Schopf, C.M. Kolodziej, R.C. Li, R.M. Broyer, Y. Chen, and H.D. Maynard: Nanoscale growth factor patterns by immobilization on a heparin-mimicking polymer. J. Am. Chem. Soc. 130, 16585 (2008).

    Article  CAS  Google Scholar 

  63. L. Lin, R.E. Marchant, J. Zhu, and K. Kottke-Marchant: Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D. Acta Biomater. 10, 5106 (2014).

    Article  CAS  Google Scholar 

  64. Y.F. Tian, H. Ahn, R.S. Schneider, S.N. Yang, L. Roman-Gonzalez, A.M. Melnick, L. Cerchietti, and A. Singh: Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells. Biomaterials 73, 110 (2015).

    Article  CAS  Google Scholar 

  65. S.T. Gould and K.S. Anseth: Role of cell-matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels. J. Tissue Eng. Regen. Med. 10, E443 (2016).

    Article  CAS  Google Scholar 

  66. N.O. Enemchukwu, R. Cruz-Acuna, T. Bongiorno, C.T. Johnson, J.R. Garcia, T. Sulchek, and A.J. Garcia: Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J. Cell Biol. 212, 113 (2016).

    Article  CAS  Google Scholar 

  67. T.T. Lee, J.R. García, J.I. Paez, A. Singh, E.A. Phelps, S. Weis, Z. Shafiq, A. Shekaran, A. Del Campo, and A.J. García: Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352 (2015).

    Article  CAS  Google Scholar 

  68. A.M. Kloxin, A.M. Kasko, C.N. Salinas, and K.S. Anseth: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59 (2009).

    Article  CAS  Google Scholar 

  69. C.A. DeForest and D.A. Tirrell: A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523 (2015).

    Article  CAS  Google Scholar 

  70. C.A. Goubko, S. Majumdar, A. Basak, and X. Cao: Hydrogel cell patterning incorporating photocaged RGDS peptides. Biomed. Microdevices 12, 555 (2010).

    Article  CAS  Google Scholar 

  71. Y. Luo and M.S. Shoichet: Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules 5, 2315 (2004).

    Article  CAS  Google Scholar 

  72. S.V. Wegner, O.I. Sentürk, and J.P. Spatz: Photocleavable linker for the patterning of bioactive molecules. Sci. Rep. 5, 18309 (2015).

    Article  CAS  Google Scholar 

  73. M.V. Tsurkan, R. Wetzel, H.R. Pérez-Hernández, K. Chwalek, A. Kozlova, U. Freudenberg, G. Kempermann, Y. Zhang, A.F. Lasagni, and C. Werner: Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Adv. Healthc. Mater. 4, 516 (2015).

    Article  CAS  Google Scholar 

  74. K.A. Mosiewicz, L. Kolb, A.J. van der Vlies, M.M. Martino, P.S. Lienemann, J.A. Hubbell, M. Ehrbar, and M.P. Lutolf: In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1072 (2013).

    Article  CAS  Google Scholar 

  75. S.C. Owen, S.A. Fisher, R.Y. Tam, C.M. Nimmo, and M.S. Shoichet: Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir 29, 7393 (2013).

    Article  CAS  Google Scholar 

  76. B. Gao, T. Konno, and K. Ishihara: Building cell-containing multilayered phospholipid polymer hydrogels for controlling the diffusion of a bioactive reagent. RSC Adv. 5, 44408 (2015).

    Article  CAS  Google Scholar 

  77. J.H. Wosnick and M.S. Shoichet: Three-dimensional chemical patterning of transparent hydrogels. Chem. Mater. 20, 55 (2008).

    Article  CAS  Google Scholar 

  78. R.G. Wylie, S. Ahsan, Y. Aizawa, K.L. Maxwell, C.M. Morshead, and M.S. Shoichet: Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799 (2011).

    Article  CAS  Google Scholar 

  79. Y. Aizawa, R. Wylie, and M. Shoichet: Endothelial cell guidance in 3D patterned scaffolds. Adv. Mater. 22, 4831 (2010).

    Article  CAS  Google Scholar 

  80. M.M. Mahmoodi, S.A. Fisher, R.Y. Tam, P.C. Goff, R.B. Anderson, J.E. Wissinger, D.A. Blank, M.S. Shoichet, M.D. Distefano: 6-Bromo-7-hydroxy-3-methylcoumarin (mBhc) is an efficient multi-photon labile protecting group for thiol caging and three-dimensional chemical patterning. Org. Biomol. Chem. 14, 8289 (2016).

    Article  CAS  Google Scholar 

  81. G.R. Souza, J.R. Molina, R.M. Raphael, M.G. Ozawa, D.J. Stark, C.S. Levin, L.F. Bronk, J.S. Ananta, J. Mandelin, M.-M. Georgescu, J.A. Bankson, J.G. Gelovani, T.C. Killian, W. Arap, and R. Pasqualini: Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291 (2010).

    Article  CAS  Google Scholar 

  82. A.M. Bratt-Leal, K.L. Kepple, R.L. Carpenedo, M.T. Cooke, and T.C. McDevitt: Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates. Integr. Biol. 3, 1224 (2011).

    Article  CAS  Google Scholar 

  83. K.M. Mabry, M.E. Schroeder, S.Z. Payne, and K.S. Anseth: Three-dimensional high-throughput cell encapsulation platform to study changes in cell-matrix interactions. ACS Appl. Mater. Interfaces 8, 21914 (2016).

    Article  CAS  Google Scholar 

  84. H.F. Chan, Y. Zhang, Y.-P. Ho, Y.-L. Chiu, Y. Jung, and K.W. Leong: Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep. 3, 3462 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for funding from the Canadian Institutes of Health Research (Foundation grant to M.S.S.), the Natural Sciences and Engineering Research Council (Discovery grant to M.S.S.), the QEII-GSST graduate student scholarship (to L.C.B.) and the Canada First Research Excellence Fund, Medicine by Design (to M.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly S. Shoichet.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahlmann, L.C., Fokina, A. & Shoichet, M.S. Dynamic bioengineered hydrogels as scaffolds for advanced stem cell and organoid culture. MRS Communications 7, 472–486 (2017). https://doi.org/10.1557/mrc.2017.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.72

Navigation