Skip to main content
Log in

Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2017

This article has been updated

Abstract

Polymer:fullerene nanoparticles (NPs) offer two key advantages over bulk heterojunction (BHJ) films for organic photovoltaics (OPVs), water-processability and potentially superior morphological control. Once an optimal active layer morphology is reached, maintaining this morphology at OPV operating temperatures is key to the lifetime of a device. Here we study the morphology of the PDPP-TNT (polyη3,6-dithio-phene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthaleneν):PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) NP system and then compare the thermal stability of NP and BHJ films to the common poly(3-hexylthiophene) (P3HT): phenyl C61 butyric acid methyl ester (PC61BM) system. We find that material Tg plays a key role in the superior thermal stability of the PDPP-TNT:PC71BM system; whereas for the P3HT:PC61BM system, domain structure is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Change history

References

  1. M.M. Wienk, M. Turbiez, J. Gilot, and R.A.J. Janssen: Narrow bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv. Mater. 20, 2556 (2008).

    Article  CAS  Google Scholar 

  2. W. Li, K.H. Hendriks, A. Furlan, W.S.C. Roelofs, M.M. Wienk, and R.A.J. Janssen: Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J. Am. Chem. Soc. 135, 18942 (2013).

    Article  CAS  Google Scholar 

  3. E. Zhou, Q. Wei, S. Yamakawa, Y. Zhang, K. Tajima, C. Yang, and K. Hashimoto: Diketopyrrolopyrrole-based semiconducting polymer for photovoltaic device with photocurrent response wavelengths up to 1. 1 µm. Macromolecules 43, 821 (2010).

    Article  CAS  Google Scholar 

  4. P. Sonar, S.P. Singh, Y. Li, Z.-E. Ooi, T. Ha, I. Wong, M.S. Soh, and A. Dodabalapur: High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design. Energy Environ. Sci. 4, 2288 (2011).

    Article  CAS  Google Scholar 

  5. F. Liu, Y. Gu, J.W. Jung, W.H. Jo, and T.P. Russell: On the morphology of polymer-based photovoltaics. J. Polym. Sci. B: Polym. Phys. 50, 1018 (2012).

    Article  CAS  Google Scholar 

  6. N.P. Holmes, S. Ulum, P. Sista, K.B. Burke, M.G. Wilson, M.C. Stefan, X. Zhou, P.C. Dastoor, and W.J. Belcher: The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Sol. Energy Mater. Sol. Cells 128, 369 (2014).

    Article  CAS  Google Scholar 

  7. B. Vaughan, E.L. Williams, N.P. Holmes, P. Sonar, A. Dodabalapur, P.C. Dastoor, and W.J. Belcher: Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer. Phys. Chem. Chem. Phys. 16, 2647 (2014).

    Article  CAS  Google Scholar 

  8. C. Lindqvist, J. Bergqvist, O. Bäcke, S. Gustafsson, E. Wang, E. Olssen, O. Inganäs, M.R. Andersson, and C. Müller: Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. Appl. Phys. Lett. 104, 153301 (2014).

    Article  Google Scholar 

  9. A. Guerrero and G. Garcia-Belmonte: Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett. 9, 10 (2016).

    Article  Google Scholar 

  10. S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D’Haen, E. Goovaerts, L. Lutsen, J. Manca, and D. Vanderzande: Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Sol. Energy Mater. Sol. Cells 92, 753 (2008).

    Article  CAS  Google Scholar 

  11. C. Müller: On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem. Mater. 27, 2740 (2015).

    Article  Google Scholar 

  12. M.O. Reese, S.A. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz, D.S. Ginley, D.C. Olson, M.T. Lloyd, P. Morvillo, E.A. Katz, A. Elschner, O. Haillant, T.R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K.R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, T. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisankerm, M. Pannone, M. Xiao, J. Hauch, R. Steim, D.M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A.J.J.M. van Breemen, C. Girotto, E. Voroshazi, and F.C. Krebs: Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 1253 (2011).

    Article  CAS  Google Scholar 

  13. A.B. Tamayo, B. Walker, and T.-Q. Nguyen: A low band gap, solution pro-cessable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells. J. Phys. Chem. C 112, 11545 (2008).

    Article  CAS  Google Scholar 

  14. N.A.D. Yamamoto, M.E. Payne, M. Koehler, A. Facchetti, L.S. Roman, and A.C. Arias: Charge transport model for photovoltaic devices based on printed polymer:fullerene nanoparticles. Sol. Energy Mater. Sol. Cells 141, 171 (2015).

    Article  CAS  Google Scholar 

  15. N.P. Holmes, N. Nicolaidis, K. Feron, M. Barr, K.B. Burke, M. Al-Mudhaffer, P. Sista, A.L.D. Kilcoyne, M.C. Stefan, X. Zhou, P.C. Dastoor, and W.J. Belcher: Probing the origin of photocurrent in nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 140, 412 (2015).

    Article  CAS  Google Scholar 

  16. E.L. Williams, S. Gorelik, I. Phang, M. Bosman, C. Vijila, G.S. Subramanian, P. Sonar, J. Hobley, S.P. Singh, H. Matsuzaki, A. Furube, and R. Katoh: Nanoscale phase domain structure and associated device performance of organic solar cells based on a diketopyrrolo-pyrrole polymer. RSC Adv. 3, 20113 (2013).

    Article  CAS  Google Scholar 

  17. K.H. Hendriks, G.H.L. Heintges, V.S. Gevaerts, M.M. Wienk, and R.A.J. Janssen: High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. 52, 8341 (2013).

    Article  CAS  Google Scholar 

  18. L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K.C. Cha, Y. He, G. Li, and Y. Yang: Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc. 134, 10071 (2012).

    Article  CAS  Google Scholar 

  19. W. Li, W.S.C. Roelofs, M.M. Wienk, and R.A.J. Janssen: Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control. J. Am. Chem. Soc. 134, 13787 (2012).

    Article  CAS  Google Scholar 

  20. M.T. Dang, G. Wantz, H. Bejbouji, M. Urien, O.J. Dautel, L. Vignau, and L. Hirsch: Polymeric solar cells based on P3HT:PCBM: role of the casting solvent. Sol. Energy Mater. Sol. Cells 95, 3408 (2011).

    Article  CAS  Google Scholar 

  21. C. Nicolet, D. Deribew, C. Renaud, G. Fleury, C. Brochon, E. Cloutet, L. Vignau, G. Wantz, H. Cramail, M. Geoghegan, and G. Hadziioannou: Optimization of the bulk heterojunction composition for enhanced photovoltaic properties: correlation between the molecular weight of the semiconducting polymer and device Performance. J. Phys. Chem. B 115, 12717 (2011).

    Article  CAS  Google Scholar 

  22. T. Wang, A.D.F. Dunbar, P.A. Staneic, A.J. Pearson, P.E. Hopkinson, J.E. MacDonald, S. Lilliu, C. Pizzey, N.J. Terrill, A.M. Donald, A.J. Ryan, R.A.L. Jones, and D.G. Lidzey: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6, 4128 (2010).

    Article  CAS  Google Scholar 

  23. R. Badrou Aïch, Y. Zou, M. Leclerc, and Y. Tao: Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells. Org. Electron. 11, 1053 (2010).

    Article  Google Scholar 

  24. A.P. Zoombelt, S.G.J. Mathijssen, M.G.R. Turbiez, M.M. Wienk, and R.A.J. Janssen: Small band gap polymers based on diketopyrrolopyrrole. J. Mater. Chem. 20, 2240 (2010).

    Article  CAS  Google Scholar 

  25. R. Hansson, L.K.E. Ericsson, N.P. Holmes, J. Rysz, A. Opitz, M. Campoy-Quiles, E. Wang, M.G. Barr, A.L.D. Kilcoyne, X. Zhou, P. Dastoor, and M. Moons: Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC70BM blend. J. Mater. Chem. A 3, 6970 (2015).

    Article  CAS  Google Scholar 

  26. F. Liu, Y. Gu, C. Wang, W. Zhao, D. Chen, A.L. Briseno, and T.P. Russell: Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends. Adv. Mater. 24, 3947 (2012).

    Article  CAS  Google Scholar 

  27. P.E. Hopkinson, P.A. Staniec, A.J. Pearson, A.D.F. Dunbar, T. Wang, A.J. Ryan, R.A.L. Jones, D.G. Lidzey, and A.M. Donald: A phase diagram of the P3HT:PCBM organic photovoltaic system: implications for device processing and performance. Macromolecules 44, 2908 (2011).

    Article  CAS  Google Scholar 

  28. C. Müller, E. Wang, L.M. Andersson, K. Tvingstedt, Y. Zhou, M.R. Andersson, and O. Inganäs: Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Adv. Funct. Mater. 20, 2124 (2010).

    Article  Google Scholar 

  29. C. Bruner, F. Novoa, S. Dupont, and R. Dauskardt: Decohesion kinetics in polymer organic solar cells. ACS Appl. Mater. Interfaces 6, 21474 (2014).

    Article  CAS  Google Scholar 

  30. C. Lindqvist, E. Wang, M.R. Andersson, and C. Müller: Facile monitoring of fullerene crystallization in polymer solar cell blends by UV–vis spectro-scopy. Macromol. Chem. Phys. 215, 530 (2014).

    Article  CAS  Google Scholar 

  31. N.P. Holmes, M. Marks, P. Kumar, R. Kroon, M.G. Barr, N. Nicolaidis, K. Feron, A. Pivrikas, A. Fahy, A. Diaz de Zerio Mendaza, A.L.D. Kilcoyne, C. Müller, X. Zhou, M.R. Andersson, P.C. Dastoor, W.J. Belcher: Nano-pathways: bridging the divide between waterprocessable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy 19, 495 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Newcastle Electron Microscopy and X-ray Unit. Special thanks to Robin Arnold and Samson Dowland at the University of Sydney (Anatomy and Histology, School of Medical Sciences) where TEM measurements were performed. The University of Newcastle and the Australian Renewable Energy Agency (ARENA) are gratefully acknowledged for PhD scholarships (NH). We acknowledge financial support from the Commonwealth of Australia through the Access to Major Research Facilities Program. The A.L.S. is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed in part at the Materials node (Newcastle) and the Queensland node of the Australian National Fabrication Facility (ANFF), which is a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and microfabrication facilities for Australia’s researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie P. Holmes.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2017.3|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, N.P., Vaughan, B., Williams, E.L. et al. Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications. MRS Communications 7, 67–73 (2017). https://doi.org/10.1557/mrc.2017.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.3

Navigation