Skip to main content
Log in

Grain boundary stability and influence on ionic conductivity in a disordered perovskite—a first-principles investigation of lithium lanthanum titanate

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The origin of ionic conductivity in bulk lithium lanthanum titanate, a promising solid electrolyte for Li-ion batteries, has long been under debate, with experiments showing lower conductivity than predictions. Using first-principles-based calculations, we find that experimentally observed type I boundaries are more stable compared with the type II grain boundaries, consistent with their observed relative abundance. Grain boundary stability appears to strongly anti-correlate with the field strength as well as the spatial extent of the space charge region. Ion migration is faster along type II grain boundaries than across, consistent with recent experiments of increased conductivity when type II densities were increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Table I
Figure 2
Figure 3
Figure 4
Figure 5
Table II
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J.N. Mrgudich: Conductivity of silver iodide pellets for solid-electrolyte batteries. J. Electrochem. Soc. 107, 475 (1960).

    Article  CAS  Google Scholar 

  2. K. Takada: Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013).

    Article  CAS  Google Scholar 

  3. Y. Inaguma, C. Liquan, and M. Itoh: High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article  CAS  Google Scholar 

  4. Y. Inaguma and M. Nakashima: A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J. Power Sources 228, 250–255 (2013).

    Article  CAS  Google Scholar 

  5. A. Mei, X. Wang, Y. Feng, S. Zhao, G. Li, H. Geng, Y. Lin, and C. Nan: Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica. Solid State Ion. 179, 2255–2259 (2008).

    Article  CAS  Google Scholar 

  6. K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  7. Y.Q. Cheng, Z.H. Bi, A. Huq, M. Feygenson, C.A. Bridges, M.P. Paranthaman, and B.G. Sumpter: An integrated approach for structural characterization of complex solid state electrolytes: the case of lithium lanthanum titanate. J. Mater. Chem. A 2, 2418 (2014).

    Article  CAS  Google Scholar 

  8. D. Qian, B. Xu, H.-M. Cho, T. Hatsukade, K.J. Carroll, and Y.S. Meng: Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem. Mater. 24, 2744–2751 (2012).

    Article  CAS  Google Scholar 

  9. O. Bohnke, C. Bohnke, and J.L. Fourquet: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion. 91, 21–31 (1996).

    Article  CAS  Google Scholar 

  10. O. Bohnke, H. Duroy, J.L. Fourquet, S. Ronchetti, and D. Mazza: In search of the cubic phase of the Li+ ion-conducting perovskite La2/3-x Li3x TiO3: structure and properties of quenched and in situ heated samples. Solid State Ion. 149, 217–226 (2002).

    Article  CAS  Google Scholar 

  11. O. Bohnke, J. Emery, A. Veron, and J.L. Fourquet: A distribution of activation energies for the local and long-range ionic motion is consistent with the disordered structure of the perovskite Li3x La2/3-x TiO3. Solid State Ion. 109, 25–34 (1998).

    Article  CAS  Google Scholar 

  12. C. Ma, K. Chen, C. Liang, C.-W. Nan, R. Ishikawa, K. More, and M. Chi: Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638 (2014).

    Article  CAS  Google Scholar 

  13. H. Yu, Y.G. So, A. Kuwabara, E. Tochigi, N. Shibata, T. Kudo, H. Zhou, and Y. Ikuhara: Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett. 16, 2907–2915 (2016).

    Article  CAS  Google Scholar 

  14. C. Ma, Y. Cheng, K. Chen, J. Li, B.G. Sumpter, C.-W. Nan, K.L. More, N.J. Dudney, and M. Chi: Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries. Adv. Energy Mater. 6, 1600053 (2016).

  15. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  16. A. Stukowski: Ovito Open Visualization Tool. http://ovito.org/ (2015).

    Google Scholar 

  17. G. Kresse and J. Furthmller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  18. G. Kresse and J. Furthmller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  19. G. Kresse and J. Hafner: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 251–269 (1994).

    Article  Google Scholar 

  20. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  21. G. Henkelman and H. Jónsson: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  22. G. Henkelman, B.P. Uberuaga, and H. Jónsson: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  23. D. Sheppard and G. Henkelman: Paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769–1771 (2011).

    Article  CAS  Google Scholar 

  24. D. Sheppard, R. Terrell, and G. Henkelman: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Article  Google Scholar 

  25. D. Sheppard, P. Xiao, W. Chemelewski, D.D. Johnson, and G. Henkelman: A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    Article  Google Scholar 

  26. P.E. Blchl: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof: Errata generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  29. P. Pulay: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73, 393–398 (1980).

    Article  CAS  Google Scholar 

  30. H. Moriwake, X. Gao, and A. Kuwabara: Domain boundaries and their influence on Li migration in solid-state electrolyte (La, Li) TiO3. J. Power Sources 276, 203–207 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathleen C. Alexander or P. Ganesh.

Additional information

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan Error! Hyperlink reference not valid.downloads/doe-public-access-plan).

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2016.58. Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, K.C., Ganesh, P., Chi, M. et al. Grain boundary stability and influence on ionic conductivity in a disordered perovskite—a first-principles investigation of lithium lanthanum titanate. MRS Communications 6, 455–463 (2016). https://doi.org/10.1557/mrc.2016.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.58

Navigation