Skip to main content
Log in

Structure and thermal decomposition of a nanocrystalline mechanically alloyed supersaturated Cu–Ta solid solution

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The formation of a metastable Cu–Ta solid solution in a mechanically alloyed Cu–10 at.%Ta alloy and its subsequent decomposition during annealing was investigated by atom probe tomography. During annealing, the as-milled Cu-rich alloy undergoes phase separation; Ta atoms diffuse out of the Cu lattice to form Ta clusters and particles along grain boundaries and within the Cu grains. The role of the Ta clusters and the nature of the solid solution as a potential strengthening mechanism for these alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table I.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. M. Wang, N. Vo, M. Campion, T. Nguyen, D. Setman, S. Dillon, P. Bellon, and R. Averback: Forced atomic mixing during severe plastic deformation: chemical interactions and kinetically driven segregation. Acta Mater. 66, 1 (2014).

    Article  CAS  Google Scholar 

  2. S.N. Arshad, T.G. Lach, M. Pouryazdan, H. Hahn, P. Bellon, S.J. Dillon, and R.S. Averback: Dependence of shear-induced mixing on length scale. Scr. Mater. 68, 215 (2013).

    Article  CAS  Google Scholar 

  3. M. Wang, R.S. Averback, P. Bellon, and S. Dillon: Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation. Acta Mater. 62, 276 (2014).

    Article  CAS  Google Scholar 

  4. T. Klassen, U. Herr, and R. Averback: Ball milling of systems with positive heat of mixing: effect of temperature in Ag–Cu. Acta Mater. 45, 2921 (1997).

    Article  CAS  Google Scholar 

  5. C. Gente, M. Oehring, and R. Bormann: Formation of thermodynamically unstable solid solutions in the Cu–Co system by mechanical alloying. Phys. Rev. B 48, 13244 (1993).

    Article  CAS  Google Scholar 

  6. M.A. Atwater, D. Roy, K.A. Darling, B.G. Butler, R.O. Scattergood, and C.C. Koch: The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater. Sci. Eng. A 558, 226 (2012).

    Article  CAS  Google Scholar 

  7. V.d.P. Martinez, C. Aguilar, J. Marín, S. Ordoñez, and F. Castro: Mechanical alloying of Cu–Mo powder mixtures and thermodynamic study of solubility. Mater Lett. 61, 929 (2007).

    Article  CAS  Google Scholar 

  8. E. Botcharova, J. Freudenberger, and L. Schultz: Mechanical alloying of copper with niobium and molybdenum. J. Mater. Sci. 39, 5287 (2004).

    Article  CAS  Google Scholar 

  9. K. Darling, A. Roberts, Y. Mishin, S. Mathaudhu, and L. Kecskes: Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J. Alloys Compd. 573, 142 (2013).

    Article  CAS  Google Scholar 

  10. S. Özerinç, K. Tai, N.Q. Vo, P. Bellon, R.S. Averback, and W.P. King: Grain boundary doping strengthens nanocrystalline copper alloys. Scr. Mater. 67, 720 (2012).

    Article  Google Scholar 

  11. K.A. Darling, M.A. Tschopp, R.K. Guduru, W.H. Yin, Q. Wei, and L.J. Kecskes: Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion. Acta Mater. 76, 168 (2014).

    Article  CAS  Google Scholar 

  12. M. Furukawa, Z. Horita, M. Nemoto, and T. Langdon: Review: processing of metals by equal-channel angular pressing. J. Mater. Sci. 36, 2835 (2001).

    Article  CAS  Google Scholar 

  13. V. Segal: Materials processing by simple shear. Mater. Sci. Eng. A 197, 157 (1995).

    Article  Google Scholar 

  14. V. Segal: Equal channel angular extrusion: from macromechanics to structure formation. Mater. Sci. Eng. A 271, 322 (1999).

    Article  Google Scholar 

  15. M.K. Miller: Atom Probe Tomography (Kluwer Academic/Plenum Publishers, New York, 2000).

    Book  Google Scholar 

  16. M. Miller and E. Kenik: Atom probe tomography: a technique for nanoscale characterization. Microsc. Microanal. 10, 336 (2004).

    Article  CAS  Google Scholar 

  17. R.P. Kolli, D.N. Seidman, T. Al-Kassab, J. Christian, F. de Geuser, W. Lefebvre, D. Blavette, B. Fultz, J. Howe, and S. Goodman: Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe–Cu steel. Microsc. Microanal. 13, 272 (2007).

    Article  CAS  Google Scholar 

  18. M. Alinger, G. Odette, and D. Hoelzer: On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys. Acta Mater. 57, 392 (2009).

    Article  CAS  Google Scholar 

  19. M.K. Miller, C.M. Parish, and Q. Li: Advanced oxide dispersion strengthened and nanostructured ferritic alloys. Mater. Sci. Technol. 29, 1174 (2013).

    Article  CAS  Google Scholar 

  20. F. Vurpillot, A. Bostel, and D. Blavette: Trajectory overlaps and local magnification in three-dimensional atom probe. Appl. Phys. Lett. 76, 3127 (2000).

    Article  CAS  Google Scholar 

  21. F. Vurpillot, A. Cerezo, D. Blavette, and D. Larson: Modeling image distortions in 3DAP. Microsc. Microanal. 10, 384 (2004).

    Article  CAS  Google Scholar 

  22. B. Gault, F. De Geuser, L. Bourgeois, B. Gabble, S. Ringer, and B. Muddle: Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al–Cu–Li–Mg–Ag alloy. Ultramicroscopy 111, 683 (2011).

    Article  CAS  Google Scholar 

  23. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. Ping, and K. Hono: Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 49, 389 (2001).

    Article  CAS  Google Scholar 

  24. T.B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  25. T. Frolov, K. Darling, L. Kecskes, and Y. Mishin: Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Mater. 60, 2158 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thanks to Baptiste Gault for his comments on local magnification effects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristopher A. Darling.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.34

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojhirunsakool, T., Darling, K.A., Tschopp, M.A. et al. Structure and thermal decomposition of a nanocrystalline mechanically alloyed supersaturated Cu–Ta solid solution. MRS Communications 5, 333–339 (2015). https://doi.org/10.1557/mrc.2015.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.34

Navigation