Skip to main content
Log in

Influence of the deformation rate on phase stability and mechanical properties of a Ti–29Nb–13Ta–4.6Zr–xO alloy analyzed by in situ high-energy X-ray diffraction during compression tests

  • Novel Synthesis and Processing of Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, a Ti–29Nb–13Ta–4.6Zr–xO Gum Metal with two significantly different oxygen levels (388 and 3570 ppm) was investigated during deformation. The alloys were compressed during in situ high-energy X-ray diffraction using three different strain rates, 10−4, 10−3, and 10−1 s−1, in order to evaluate their influence on phase stability and mechanical properties. The influence of oxygen on the deformation process was also studied. Deformation takes place by twinning, stress-induced, and reverse martensitic transformation and was observed, for some samples, a spinodal decomposition of the β-phase during elastic deformation. The mechanical properties were similar for the different rates employed when considering the same oxygen level. The alloy with a higher amount of oxygen, however, showed a substantial increase in mechanical strength, with a yield strength of around 680 MPa, which is more than three times higher than for the specimen with 388 ppm of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Achache, S. Lamri, A. Alhussein, A. Billard, M. François, and F. Sanchette: Gum metal thin films obtained by magnetron sputtering of a Ti-Nb-Zr-Ta target. Mater. Sci. Eng. A 673, 492–502 (2016).

    Article  CAS  Google Scholar 

  2. M. Abdel-Hady, K. Hinoshita, and M. Morinaga: General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater. 55, 477–480 (2006).

    Article  CAS  Google Scholar 

  3. J. Strasky, P. Harcuba, K. Vaclavova, K. Horvath, M. Landa, O. Srba, and M. Janecek: Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J. Mech. Behav. Biomed. Mater. 71, 329–336 (2017).

    Article  CAS  Google Scholar 

  4. M. Bönisch, A. Panigrahi, M. Stoica, M. Calin, E. Ahrens, M. Zehetbauer, W. Skrotzki, and J. Eckert: Giant thermal expansion and α-precipitation pathways in Ti-alloys. Nat. Commun. 8, 1429 (2017).

    Article  CAS  Google Scholar 

  5. L.C. Zhang and L.Y. Chen: A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 21, 1801215 (2019).

    Article  CAS  Google Scholar 

  6. L.-C. Zhang, L.-Y. Chen, and L. Wang: Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Adv. Eng. Mater., 22 (5), 1901258 (2020).

    Article  CAS  Google Scholar 

  7. R.L. Batalha, W.C. Batalha, L. Deng, T. Gustmann, S. Pauly, C.S. Kiminami, and P. Gargarella: Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting. J. Mater. Res. 35, 1143–1153 (2020).

    Article  CAS  Google Scholar 

  8. B.-Q. Li, X.-C. Li, and X. Lu: Microstructure and compressive properties of porous Ti–Nb–Ta–Zr alloy for orthopedic applications. J. Mater. Res. 34, 4045–4055 (2019).

    Article  CAS  Google Scholar 

  9. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003).

    Article  CAS  Google Scholar 

  10. N. Nagasako, R. Asahi, D. Isheim, D.N. Seidman, S. Kuramoto, and T. Furuta: Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation. Acta Mater. 105, 347–354 (2016).

    Article  CAS  Google Scholar 

  11. M. Tane, T. Nakano, S. Kuramoto, M. Hara, M. Niinomi, N. Takesue, T. Yano, and H. Nakajima: Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: Cold working and oxygen effects. Acta Mater. 59, 6975–6988 (2011).

    Article  CAS  Google Scholar 

  12. M. Premkumar, V.S. Himabindu, S. Banumathy, A. Bhattacharjee, and A.K. Singh: Effect of mode of deformation by rolling on texture evolution and yield locus anisotropy in a multifunctional β titanium alloy. Mater. Sci. Eng. A 552, 15–23 (2012).

    Article  CAS  Google Scholar 

  13. T. Furuta, M. Hara, Z. Horita, and S. Kuramoto: Severe plastic deformation in gum metal with composition at the structural stability limit. Int. J. Mater. Res. 100, 1217–1221 (2009).

    Article  CAS  Google Scholar 

  14. M. Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada, and K. Kubo: Theoretical design of β-type titanium alloys. In Proceedings of Seventh World Conference on Titanium, (Titanium’ 92, Science and Technology, San Diego, CA, USA, 1992); pp. 217–224.

  15. A.H. Plaine, M.R. da Silva, and C. Bolfarini: Tailoring the microstructure and mechanical properties of metastable Ti–29Nb–13Ta–4.6Zr alloy for self-expansible stent applications. J. Alloys Compd. 800, 35–40 (2019).

    Article  CAS  Google Scholar 

  16. S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, and L.C. Zhang: Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. J. Alloys Compd. 792, 684–693 (2019).

    Article  CAS  Google Scholar 

  17. S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, and L.C. Zhang: Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Mater. Des. 181, 108064 (2019).

    Article  CAS  Google Scholar 

  18. J. Málek, F. Hnilica, S. Bartáková, P. Míka, and J. Veselý: The effect of different forms of oxygen on properties of beta titanium alloys. Acta Polytech. 58, 179–183 (2018).

    Article  Google Scholar 

  19. J.R.S. Martins, Jr., R.O. Araujo, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini: Influence of oxygen content and microstructure on the mechanical properties and biocompatibility of Ti-15 wt%Mo alloy used for biomedical applications. Materials 7, 232–243 (2014).

    Article  CAS  Google Scholar 

  20. M. Niinomi, M. Nakai, M. Hendrickson, P. Nandwana, T. Alam, D. Choudhuri, and R. Banerjee: Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy. Scr. Mater. 123, 144–148 (2016).

    Article  CAS  Google Scholar 

  21. F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini: The Influence of small quantities of oxygen in the structure, microstructure, hardness, elasticity modulus and cytocompatibility of Ti-Zr alloys for dental applications. Materials 7, 542–553 (2014).

    Article  CAS  Google Scholar 

  22. L.S. Wei, H.Y. Kim, and S. Miyazaki: Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys. Acta Mater. 100, 313–322 (2015).

    Article  CAS  Google Scholar 

  23. A.H. Plaine, M.R. da Silva, and C. Bolfarini: Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications. J. Mater. Res. Technol. 8, 3852–3858 (2019).

    Article  CAS  Google Scholar 

  24. L. Wang, J. Qu, L. Chen, Q. Meng, L.-C. Zhang, J. Qin, D. Zhang, and W. Lu: Investigation of deformation mechanisms in β-type Ti-35Nb-2Ta-3Zr alloy via FSP leading to surface strengthening. Metall. Mater. Trans. A 46, 4813–4818 (2015).

    Article  CAS  Google Scholar 

  25. C.A.F. Salvador, V.C. Opini, E.S.N. Lopes, and R. Caram: Microstructure evolution of Ti–30Nb–(4Sn) alloys during classical and step-quench aging heat treatments. Mater. Sci. Technol. 33, 400–407 (2016).

    Article  CAS  Google Scholar 

  26. Q. Meng, J. Zhang, Y. Huo, Y. Sui, J. Zhang, S. Guo, and X. Zhao: Design of low modulus β-type titanium alloys by tuning shear modulus C44. J. Alloys Compd. 745, 579–585 (2018).

    Article  CAS  Google Scholar 

  27. W. Chen, Z. Song, L. Xiao, Q. Sun, J. Sun, and P. Ge: Effect of prestrain on microstructure and mechanical behavior of aged Ti–10V–2Fe–3Al alloy. J. Mater. Res. 24, 2899–2908 (2011).

    Article  Google Scholar 

  28. W. Guo, M.Z. Quadir, S. Moricca, T. Eddows, and M. Ferry: Microstructural evolution and final properties of a cold-swaged multifunctional Ti–Nb–Ta–Zr–O alloy produced by a powder metallurgy route. Mater. Sci. Eng. A 575, 206–216 (2013).

    Article  CAS  Google Scholar 

  29. M. Besse, P. Castany, and T. Gloriant: Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence. Acta Mater. 59, 5982–5988 (2011).

    Article  CAS  Google Scholar 

  30. X. Song, L. Wang, M. Niinomi, M. Nakai, Y. Liu, and M. Zhu: Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions. Mater. Sci. Eng. A 619, 112–118 (2014).

    Article  CAS  Google Scholar 

  31. A.H. Plaine, M.R. da Silva, and C. Bolfarini: Effect of thermo-mechanical treatments on the microstructure and mechanical properties of the metastable β-type Ti-35Nb-7Zr-5Ta alloy. Mat. Res. 22, e20180462 (2018).

    Article  CAS  Google Scholar 

  32. R.J. Talling, R.J. Dashwood, M. Jackson, and D. Dye: On the mechanism of superelasticity in gum metal. Acta Mater. 57, 1188–1198 (2009).

    Article  CAS  Google Scholar 

  33. T.W. Gustafson, P.C. Panda, G. Song, and R. Raj: Influence of microstructural scale on plastic flow behavior of metal matrix composites. Acta Mater. 45, 1633–1643 (1997).

    Article  CAS  Google Scholar 

  34. Y.P. Hou, S. Guo, X.L. Qiao, T. Tian, Q.K. Meng, X.N. Cheng, and X.Q. Zhao: Origin of ultralow Youngs modulus in a metastable β-type Ti-33Nb-4Sn alloy. J. Mech. Behav. Biomed. 59, 220–225 (2016).

    Article  CAS  Google Scholar 

  35. S. Banerjee, R. Tewari, and G.K. Dey: Omega phase transformation — Morphologies and mechanisms. Int. J. Mater. Res. 97, 963–967 (2006).

    Article  CAS  Google Scholar 

  36. H. Xing and J. Sun: Mechanical twinning and omega transition by ⟨111⟩ {112} shear in a metastable β titanium alloy. Appl. Phys. Lett. 93, 031908 (2008).

    Article  CAS  Google Scholar 

  37. C.R.M. Afonso, A. Amigo, V. Stolyarov, D. Gunderov, and V. Amigo: From porous to dense nanostructured β-Ti alloys through high-pressure torsion. Sci Rep. 7, 13618 (2017).

    Article  CAS  Google Scholar 

  38. M. Bönisch: Structural Properties, Deformation Behavior and Thermal Stability of Martensitic Ti-Nb Alloys. (Fakultat Mathematik und Naturwissenschaften, Technischen Universität Dresden, Dresden, 2016); p. 160.

    Google Scholar 

  39. A.M. Mebed, T. Koyama, and T. Miyazaki: Spinodal decomposition existence of the β Ti–Cr binary alloy computer simulation of the real alloy system and experimental investigations. Comput. Mater. Sci. 14, 318–322 (1999).

    Article  CAS  Google Scholar 

  40. O. Rios and F. Ebrahimi: Spinodal decomposition of the γ-phase upon quenching in the Ti–Al–Nb ternary alloy system. Intermetallics 19, 93–98 (2011).

    Article  CAS  Google Scholar 

  41. R.F. Zhang and S. Veprek: On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system. Mater. Sci. Eng. A 424, 128–137 (2006).

    Article  CAS  Google Scholar 

  42. A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee, and H.L. Fraser: Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys. Acta Mater. 60, 596–609 (2012).

    Article  CAS  Google Scholar 

  43. C.R.M. Afonso, P.L. Ferrandini, A.J. Ramirez, and R. Caram: High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti-35Nb-7Zr-5Ta alloy for implant applications. Acta Biomater. 6, 1625–1629 (2010).

    Article  CAS  Google Scholar 

  44. M. Kheradmandfard, S.F. Kashani-Bozorg, K.H. Kang, O.V. Penkov, A.Z. Hanzaki, Y.S. Pyoun, A. Amanov, and D.E. Kim: Simultaneous grain refinement and nanoscale spinodal decomposition of β phase in Ti-Nb-Ta-Zr alloy induced by ultrasonic mechanical impacts. J. Alloys Compd. 738, 540–549 (2018).

    Article  CAS  Google Scholar 

  45. A. Zafari, X.S. Wei, W. Xu, and K. Xia: Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: The role played by stress induced martensitic transformation. Acta Mater. 97, 146–155 (2015).

    Article  CAS  Google Scholar 

  46. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, and C.H. Ward: Aging response of coarse- and fine-grained β titanium alloys. Mater. Sci. Eng. A 405, 296–305 (2005).

    Article  CAS  Google Scholar 

  47. Y. Mantani and M. Tajima: Phase transformation of quenched α″ martensite by aging in Ti–Nb alloys. Mater. Sci. Eng. A 438–440, 315–319 (2006).

    Article  CAS  Google Scholar 

  48. A. Cremasco, P.N. Andrade, R.J. Contieri, E.S.N. Lopes, C.R.M. Afonso, and R. Caram: Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy. Mater. Des. 32, 2387–2390 (2011).

    Article  CAS  Google Scholar 

  49. S. Malinov, W. Shaa, Z. Guoa, C.C. Tangb, and A.E. Longa: Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Mater. Charact. 48, 279–295 (2002).

    Article  CAS  Google Scholar 

  50. G. Lütjering and J.C. Williams: Titanium, 2nd ed. (Springer-Verlag, Newyork, 2007); p. 449.

    Google Scholar 

  51. J.C. Williams, B.S. Hickman, and H.L. Marcus: The effect of omega phase on the mechanical properties of titanium alloys. Metall. Trans. 2, 1913–1919 (1970).

    Google Scholar 

  52. Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, and D. Zhang: Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater. Des. 32, 2934–2939 (2011).

    Article  CAS  Google Scholar 

  53. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian: Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 57, 251–257 (2014).

    Article  CAS  Google Scholar 

  54. X. Zhang, W. Wang, and J. Sun: Formation of {332}〈113〉β twins from parent {130}〈310〉α″ plastic twins in a full α″ Ti-Nb alloy by annealing. Mater. Charact. 145, 724–729 (2018).

    Article  CAS  Google Scholar 

  55. N. Hafeez, S. Liu, E. Lu, L. Wang, R. Liu, W. Lu, and L.-C. Zhang: Mechanical behavior and phase transformation of β-type Ti-35Nb-2Ta-3Zr alloy fabricated by 3D-printing. J. Alloys Compd. 790, 117–126 (2019).

    Article  CAS  Google Scholar 

  56. Y. Yang, G.P. Li, H. Wang, S.Q. Wu, L.C. Zhang, Y.L. Li, and K. Yang: Formation of zigzag-shaped {112}⟨111⟩ β mechanical twins in Ti–24.5Nb–0.7Ta–2Zr–1.4O alloy. Scr. Mater. 66, 211–214 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Center for Research in Energy and Materials (CNPEM) for allowing the use of their facilities and to Mr. Leonardo Wu for technical assistance. The financial support granted by CAPES (Coordination for the Improvement of Higher Education Personnel) (Grant No. 88882.332706/2018-01) and under the program BRAGECRIM (Process No. 88887.198933/2018-00) in collaboration with DFG (German Research Foundation), as well as by FAPESP (São Paulo Research Foundation) (Grant No. 2013/05987-8) are acknowledged. S.P. acknowledges financial support by DFG under Grant No. PA 2275/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piter Gargarella.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.R., Gargarella, P., Plaine, A.H. et al. Influence of the deformation rate on phase stability and mechanical properties of a Ti–29Nb–13Ta–4.6Zr–xO alloy analyzed by in situ high-energy X-ray diffraction during compression tests. Journal of Materials Research 35, 1777–1789 (2020). https://doi.org/10.1557/jmr.2020.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.150

Navigation