Skip to main content
Log in

Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have been proven to exhibit superior structural properties from cryogenic to high temperatures, demonstrating their structural stability against the formation of complex intermetallic phases or compounds as major fractions. These characteristics can find applications in nuclear and aerospace sectors as structural materials. As the dissimilar joint design is necessary for such applications, an attempt is made to fabricate the dissimilar transition joint between Al0.1CoCrFeNi-HEA and AISI304 austenitic stainless steel by conventional tungsten inert gas welding. Microstructural characterization by SEM and EBSD clearly revealed the evolution of columnar dendritic structures from the interfaces and their transformation to equiaxed dendritic grains as they reach the weld center. Also, considerable grain coarsening was observed in the heat-affected zone of the HEA. The tensile test results depict that the dissimilar weld joint showed significantly higher tensile strength (590 MPa) than the HEA (327 MPa), making it suitable for structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. P. Yvon and F. Carre: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217 (2009).

    Article  CAS  Google Scholar 

  2. K.L. Murty and I. Charit: Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383, 189 (2008).

    Article  CAS  Google Scholar 

  3. S.J. Zinkle and N.M. Ghoniem: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51, 55 (2000).

    Article  Google Scholar 

  4. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Switzerland, 2016); pp. 1, 50.

    Book  Google Scholar 

  5. W. Guo: Molecular dynamics simulation of irradiation damage in multicomponent alloys. Ph.D. thesis, University of Tennessee, Knoxville, Tennessee, 2015; pp. 1, 20.

    Google Scholar 

  6. N.A.P. Kiran Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016).

    Article  CAS  Google Scholar 

  7. T. Egami, M. Ojha, O. Khorgolkhuu, D.M. Nicholson, and G.M. Stocks: Local electronic effects and irradiation resistance in high-entropy alloys. JOM 67, 2345 (2015).

    Article  CAS  Google Scholar 

  8. L.R. Owen and N.G. Jones: Lattice distortions in high-entropy alloys. J. Mater. Res. 33, 2954 (2018).

    Article  CAS  Google Scholar 

  9. R. Sokkalingam, S. Mishra, S.R. Cheethirala, V. Muthupandi, and K. Sivaprasad: Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 48, 3630 (2017).

    Article  CAS  Google Scholar 

  10. S.Q. Xia, X. Yang, T.F. Yang, S. Liu, and Y. Zhang: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 2340 (2015).

    Article  CAS  Google Scholar 

  11. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yan, and Y. Wang: Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci. Rep. 6, 32146 (2016).

    Article  CAS  Google Scholar 

  12. M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, and J. Qiao: Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 33, 3310 (2018).

    Article  CAS  Google Scholar 

  13. Z. Lyu, X. Fan, C. Lee, S-Y. Wang, R. Feng, and P.K. Liaw: Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. J. Mater. Res. 33, 2998 (2018).

    Article  CAS  Google Scholar 

  14. T. Yang, Z. Tang, X. Xie, R. Carroll, G. Wang, Y. Wang, K.A. Dahmen, P.K. Liaw, and Y. Zhang: Deformation mechanisms of Al0.1CoCrFeNi at elevated temperatures. Mater. Sci. Eng., A 684, 552 (2017).

    Article  CAS  Google Scholar 

  15. M. Komarasamy, N. Kumar, Z. Tang, R.S. Mishra, and P.K. Liaw: Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy. Mater. Res. Lett. 3, 30 (2015).

    Article  CAS  Google Scholar 

  16. P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 655, 283 (2016).

    Article  CAS  Google Scholar 

  17. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho: High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des. 86, 598 (2015).

    Article  CAS  Google Scholar 

  18. M. Komarasamy, K. Alagarsamy, and R.S. Mishra: Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy. Intermetallics 84, 20 (2017).

    Article  CAS  Google Scholar 

  19. N. Kumar, M. Mukherjee, and A. Bandyopadhyay: Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Opt. Laser Technol. 88, 24 (2017).

    Article  CAS  Google Scholar 

  20. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, and J.A. Szpunar: Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless-steel weldment joint by austenitic filler metal. Mater. Charact. 106, 208 (2015).

    Article  CAS  Google Scholar 

  21. G. Satoh, Y.L. Yao, and C. Qiu: Strength and microstructure of laser fusion-welded Ti–SS dissimilar material pair. Int. J. Adv. Des. Manuf. Technol. 66, 469 (2013).

    Article  Google Scholar 

  22. A. Mortezaie and M. Shamanian: An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel. Int. J. Pressure Vessels Piping 116, 37 (2014).

    Article  CAS  Google Scholar 

  23. K.D. Ramkumar, P.S.G. Kumar, V.S. Radhakrishna, and K. Kothari: Studies on microstructure and mechanical properties of keyhole mode Nd:YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205. J. Mater. Res. 30, 3288 (2015).

    Article  CAS  Google Scholar 

  24. S. Sharma, R.V. Taiwade, and H. Vashishtha: Investigation on the multi-pass gas tungsten arc welded Bi-metallic combination between nickel-based superalloy and Ti-stabilized austenitic stainless steel. J. Mater. Res. 32, 3055 (2017).

    Article  CAS  Google Scholar 

  25. S. Zhou, D. Chai, J. Yu, G. Ma, and D. Wu: Microstructure characteristic and mechanical property of pulsed laser lap-welded nickel-based superalloy and stainless steel. J. Manuf. Process. 25, 220 (2017).

    Article  Google Scholar 

  26. Z.G. Zhu, F.L. Ng, J.W. Qiao, P.K. Liaw, H.C. Chen, S.M.L. Nai, J. Wei, and G.J. Bi: Interplay between microstructure and deformation behavior of a laser-welded CoCrFeNi high entropy alloy. Mater. Res. Express 6, 046514 (2019).

    Article  CAS  Google Scholar 

  27. R. Sokkalingam, K. Sivaprasad, V. Muthupandi, and M. Duraiselvam: Characterization of laser beam welded Al0.5CoCrFeNi high-entropy alloy. Key Eng. Mater. 775, 448 (2018).

    Article  Google Scholar 

  28. M. Nahmany, Z. Hooper, A. Stern, V. Geanta, and I. Voiculescu: AlxCrFeCoNi high-entropy alloys: Surface modification by electron beam bead-on-plate melting. Metallogr., Microstruct., Anal. 5, 229 (2016).

    Article  CAS  Google Scholar 

  29. Z. Wu, S.A. David, D.N. Leonard, Z. Feng, and H. Bei: Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Sci. Technol. Weld. Joining 23, 585 (2018).

    Article  CAS  Google Scholar 

  30. A.C. Martin and C. Fink: Initial weldability study on Al0.5CrCoCu0.1FeNi high-entropy alloy. Weld. World 63, 739–750 (2019).

    Article  CAS  Google Scholar 

  31. C. Issartel, H. Buscail, E. Caudron, R. Cueff, F. Riffard, S. Perrier, P. Jacquet, and M. Lambertin: Influence of nitridation on the oxidation of a 304 steel at 800 °C. Corros. Sci. 46, 2191 (2004).

    Article  CAS  Google Scholar 

  32. L. Jinlong, L. Hongyun, and L. Tongxiang: The grain size and special boundary dependence of corrosion resistance in 304 austenitic stainless steels. Mater. Chem. Phys. 163, 496 (2015).

    Article  CAS  Google Scholar 

  33. J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, and J. Qiao: Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng., A 707, 593 (2017).

    Article  CAS  Google Scholar 

  34. D.Y. Li and Y. Zhang: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).

    Article  CAS  Google Scholar 

  35. S.G. Chowdhury, S. Das, and P.K. De: Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel. Acta Mater. 53, 3951 (2005).

    Article  CAS  Google Scholar 

  36. L. Lach, J. Nowak, and D. Svyetlichnyy: The evolution of the microstructure in AISI 304L stainless steel during the flat rolling-modeling by frontal cellular automata and verification. J. Mater. Process. Technol. 255, 488 (2018).

    Article  CAS  Google Scholar 

  37. H.F.G. Abreu, S.S. Carvalho, P.L. Neto, R.P. Santos, V.N. Freire, P.M.O. Silva, and S.S.M. Tavares: Deformation induced martensite in an AISI 301LN stainless steel: Characterization and influence on pitting corrosion resistance. Mater. Res. 10, 359 (2007).

    Article  Google Scholar 

  38. S. Kou: Welding Metallurgy, 2nd ed. (Wiley-Interscience, Hoboken, New Jersey, 2003); pp. 1, 160.

    Google Scholar 

  39. Y.L. Gu, C.H. Tao, Z.W. Wei, and C.K. Liu: Microstructural evolution and mechanical properties of TIG welded superalloy GH625. Trans. Nonferrous Met. Soc. China 26, 100 (2016).

    Article  CAS  Google Scholar 

  40. L. Zhang, X. Li, Z. Nie, H. Huang, and L. Niu: Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al–Zn–Mg–Cu alloy. Mater. Des. 92, 880 (2016).

    Article  CAS  Google Scholar 

  41. S. Tokita, H. Kokawa, Y.S. Sato, and H.T. Fujii: In situ EBSD observation of grain boundary character distribution evolution during thermo-mechanical process used for grain boundary engineering of 304 austenitic stainless steel. Mater. Charact. 131, 31 (2017).

    Article  CAS  Google Scholar 

  42. M. Milad, N. Zreiba, F. Elhalouani, and C. Baradai: The effect of cold work on structure and properties of AISI 304 stainless steel. J. Mater. Process. Technol. 203, 80 (2008).

    Article  CAS  Google Scholar 

  43. M.G. Jo, H. J Kim, M. Kang, P.P. Madakashira, E.S. Park, J.Y. Suh, D.I. Kim, S.T. Hong, and H.N. Han: Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Met. Mater. Int. 24, 73 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Indradev Samajdar, Department of Metallurgical Engineering and Materials Science, IIT-Bombay, India, for providing electron backscattered diffraction (EBSD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katakam Sivaprasad or Konda Gokuldoss Prashanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokkalingam, R., Muthupandi, V., Sivaprasad, K. et al. Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel. Journal of Materials Research 34, 2683–2694 (2019). https://doi.org/10.1557/jmr.2019.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.186

Navigation