Skip to main content

Advertisement

Log in

Potential energy states and mechanical properties of thermally cycled binary glasses

  • Thermal and Structural Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of repeated thermal cycling on mechanical properties, structural relaxation, and evolution of the potential energy in binary glasses is investigated using molecular dynamics simulations. The authors consider a binary mixture annealed with different cooling rates and then exposed to one thousand thermal cycles at constant pressure. It is found that during the first few hundred transient cycles, the potential energy minima after each cycle gradually decrease and the structural relaxation proceeds through collective, irreversible displacements of atoms. With increasing cycle number, the amplitudes of the volume and potential energy oscillations are significantly reduced, and the potential energy minima saturate to a constant value that depends on the thermal cycling amplitude and the initial cooling rate. In the steady state, the glasses thermally expand and contract but most of the atoms return to their cages after each cycle, similar to limit cycles found in periodically driven amorphous materials. The results of tensile tests demonstrate that the elastic modulus and the yielding peak, evaluated after the thermal treatment, acquire maximum values at a particular thermal cycling amplitude, which coincides with the minimum of the potential energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. C. Liu and R. Maass: Elastic fluctuations and structural heterogeneities in metallic glasses. Adv. Funct. Mater. 28, 1800388 (2018).

    Article  Google Scholar 

  2. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  3. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  4. T. Egami, T. Iwashita, and W. Dmowski: Mechanical properties of metallic glasses. Metals 3, 77 (2013).

    Article  CAS  Google Scholar 

  5. E.S. Park and D.H. Kim: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 (2006).

    Article  CAS  Google Scholar 

  6. H-K. Kim, J-P. Ahn, B-J. Lee, K-W. Park, and J-C. Lee: Role of atomic-scale chemical heterogeneities in improving the plasticity of Cu–Zr–Ag bulk amorphous alloys. Acta Mater. 157, 209 (2018).

    Article  CAS  Google Scholar 

  7. B. Sarac and J. Schroers: Designing tensile ductility in metallic glasses. Nat. Commun. 4, 2158 (2013).

    Article  Google Scholar 

  8. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200 (2015).

    Article  CAS  Google Scholar 

  9. A.L. Greer and Y.H. Sun: Stored energy in metallic glasses due to strains within the elastic limit. Philos. Mag. 96, 1643 (2016).

    Article  CAS  Google Scholar 

  10. W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang, and Z. Lu: Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation. Sci. Bull. 63, 840 (2018).

    Article  CAS  Google Scholar 

  11. D. Grell, F. Dabrock, and E. Kerscher: Cyclic cryogenic pretreatments influencing the mechanical properties of a bulk glassy Zr-based alloy. Fatigue Fract. Eng. Mater. Struct. 41, 1330 (2018).

    Article  CAS  Google Scholar 

  12. W. Guo, R. Yamada, and J. Saida: Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment. Intermetallics 93, 141 (2018).

    Article  CAS  Google Scholar 

  13. S.V. Ketov, A.S. Trifonov, Y.P. Ivanov, A.Y. Churyumov, A.V. Lubenchenko, A.A. Batrakov, J. Jiang, D.V. Louzguine-Luzgin, J. Eckert, J. Orava, and A.L. Greer: On cryothermal cycling as a method for inducing structural changes in metallic glasses. NPG Asia Mater. 10, 137 (2018).

    Article  CAS  Google Scholar 

  14. B. Shang, P. Guan, and J-L. Barrat: Role of thermal expansion heterogeneity in the cryogenic rejuvenation of metallic glasses. J. Phys.: Mater. 1, 015001 (2018).

    CAS  Google Scholar 

  15. M. Utz, P.G. Debenedetti, and F.H. Stillinger: Atomistic simulation of aging and rejuvenation in glasses. Phys. Rev. Lett. 84, 1471 (2000).

    Article  CAS  Google Scholar 

  16. D.J. Lacks and M.J. Osborne: Energy landscape picture of overaging and rejuvenation in a sheared glass. Phys. Rev. Lett. 93, 255501 (2004).

    Article  Google Scholar 

  17. N.V. Priezjev: Heterogeneous relaxation dynamics in amorphous materials under cyclic loading. Phys. Rev. E 87, 052302 (2013).

    Article  Google Scholar 

  18. D. Fiocco, G. Foffi, and S. Sastry: Oscillatory athermal quasistatic deformation of a model glass. Phys. Rev. E 88, 020301(R) (2013).

    Article  Google Scholar 

  19. I. Regev, T. Lookman, and C. Reichhardt: Onset of irreversibility and chaos in amorphous solids under periodic shear. Phys. Rev. E 88, 062401 (2013).

    Article  Google Scholar 

  20. N.V. Priezjev: Dynamical heterogeneity in periodically deformed polymer glasses. Phys. Rev. E 89, 012601 (2014).

    Article  Google Scholar 

  21. I. Regev, J. Weber, C. Reichhardt, K.A. Dahmen, and T. Lookman: Reversibility and criticality in amorphous solids. Nat. Commun. 6, 8805 (2015).

    Article  CAS  Google Scholar 

  22. N.V. Priezjev: Reversible plastic events during oscillatory deformation of amorphous solids. Phys. Rev. E 93, 013001 (2016).

    Article  Google Scholar 

  23. N.V. Priezjev: Nonaffine rearrangements of atoms in deformed and quiescent binary glasses. Phys. Rev. E 94, 023004 (2016).

    Article  Google Scholar 

  24. P. Leishangthem, A.D.S. Parmar, and S. Sastry: The yielding transition in amorphous solids under oscillatory shear deformation. Nat. Commun. 8, 14653 (2017).

    Article  Google Scholar 

  25. N.V. Priezjev: Collective nonaffine displacements in amorphous materials during large-amplitude oscillatory shear. Phys. Rev. E 95, 023002 (2017).

    Article  Google Scholar 

  26. M. Fan, M. Wang, K. Zhang, Y. Liu, J. Schroers, M.D. Shattuck, and C.S. O’Hern: The effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible. Phys. Rev. E 95, 022611 (2017).

    Article  Google Scholar 

  27. N.V. Priezjev: Molecular dynamics simulations of the mechanical annealing process in metallic glasses: Effects of strain amplitude and temperature. J. Non-Cryst. Solids 479, 42 (2018).

    Article  CAS  Google Scholar 

  28. N.V. Priezjev: The yielding transition in periodically sheared binary glasses at finite temperature. Comput. Mater. Sci. 150, 162 (2018).

    Article  CAS  Google Scholar 

  29. M. Blank-Burian and A. Heuer: Shearing small glass-forming systems: A potential energy landscape perspective. Phys. Rev. E 98, 033002 (2018).

    Article  CAS  Google Scholar 

  30. N.V. Priezjev: The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses. J. Non-Cryst. Solids 503–504, 131 (2019).

    Article  Google Scholar 

  31. W. Kob and H.C. Andersen: Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: The van Hove correlation function. Phys. Rev. E 51, 4626 (1995).

    Article  CAS  Google Scholar 

  32. T.A. Weber and F.H. Stillinger: Local order and structural transitions in amorphous metal-metalloid alloys. Phys. Rev. B 31, 1954 (1985).

    Article  CAS  Google Scholar 

  33. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  34. S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  35. M.D. Ediger and P. Harrowell: Perspective: Supercooled liquids and glasses. J. Chem. Phys. 137, 080901 (2012).

    Article  CAS  Google Scholar 

  36. W. Kob and J-L. Barrat: Fluctuations, response and aging dynamics in a simple glass-forming liquid out of equilibrium. Eur. Phys. J. B 13, 319 (2000).

    Article  CAS  Google Scholar 

  37. M.L. Falk and J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).

    Article  CAS  Google Scholar 

  38. N.V. Priezjev: Slow relaxation dynamics in binary glasses during stress-controlled, tension-compression cyclic loading. Comput. Mater. Sci. 153, 235 (2018).

    Article  Google Scholar 

  39. N.C. Keim, J. Paulsen, Z. Zeravcic, S. Sastry, and S.R. Nagel: Memory formation in matter. arXiv:1810.08587 (2018).

Download references

Acknowledgments

Financial support from the National Science Foundation (CNS-1531923) is gratefully acknowledged. The article was prepared within the framework of the HSE University Basic Research Program and funded in part by the Russian Academic Excellence Project 5-100. The molecular dynamics simulations were performed using the LAMMPS numerical code developed at Sandia National Laboratories [34]. Computational work in support of this research was performed at Wright State University’s Computing Facility and the Ohio Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai V. Priezjev.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priezjev, N.V. Potential energy states and mechanical properties of thermally cycled binary glasses. Journal of Materials Research 34, 2664–2671 (2019). https://doi.org/10.1557/jmr.2019.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.145

Navigation