Skip to main content
Log in

Microscale shear specimens for evaluating the shear deformation in single-crystal and nanocrystalline Cu and at Cu–Si interfaces

  • Article
  • Plasticity and Fracture at the Nanoscales
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microscale testing has enjoyed significant developments, with the majority of testing focused on tensile/compression type tests and little focus on shear testing. With the recent advances in macroscale shear testing, we developed a novel shear structure for evaluating shear properties of bulk materials and films at the microscale. The shear response in single-crystal copper oriented along the [111] direction was found to have a yield strength of ∼180 MPa. Nanocrystalline copper specimens with different orientations showed sensitivity to the film texture with a shear yield strength nearly three times that of single-crystal copper. Shear specimens were fabricated with Cu film–Si substrate interface near the middle of the shear region and compressed to fracture. The shear response showed a mixed behavior of the stiff Si substrate and softer nanocrystalline film and failed in a brittle manner, indicating a response unique to the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475–487 (1994).

    Article  CAS  Google Scholar 

  2. W.J. Poole, M.F. Ashby, and N.A. Fleck: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559–564 (1996).

    Article  CAS  Google Scholar 

  3. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998).

    Article  CAS  Google Scholar 

  4. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999).

    Article  Google Scholar 

  5. Y. Huang, Z. Xue, H. Gao, W.D. Nix, and Z.C. Xia: A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15, 1786–1796 (2000).

    Article  CAS  Google Scholar 

  6. K. Durst, B. Backes, O. Franke, and M. Goken: Indentation size effect in metallic materials: Modelling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547–2555 (2006).

    Article  CAS  Google Scholar 

  7. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  8. J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

    Article  CAS  Google Scholar 

  9. D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119–1125 (2006).

    Article  CAS  Google Scholar 

  10. D. Kiener, C. Motz, and G. Dehm: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505, 79–87 (2009).

    Article  CAS  Google Scholar 

  11. J.Y. Kim and J. Greer: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).

    Article  CAS  Google Scholar 

  12. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319–329 (2008).

    Article  CAS  Google Scholar 

  13. J.Y. Kim, D. Jang, and J.R. Greer: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010).

    Article  CAS  Google Scholar 

  14. A.T. Jennings, M.J. Burek, and J. Greer: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article  CAS  Google Scholar 

  15. R. Soler, J.M. Wheeler, H.J. Chang, J. Segurado, J. Michler, J. Llorca, and J.M. Molina-Aldareguia: Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Mater. 81, 50–57 (2014).

    Article  CAS  Google Scholar 

  16. B. Wu, A. Heidelberg, and J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005).

    Article  CAS  Google Scholar 

  17. A.S. Budiman, S.M. Han, J.R. Greer, N. Tamura, J.R. Patel, and W.D. Nix: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56, 602–608 (2008).

    Article  CAS  Google Scholar 

  18. M. Walter and O. Kraft: A new method to measure torsion moments on small-scaled specimens. Rev. Sci. Instrum. 82, 035109 (2011).

    Article  CAS  Google Scholar 

  19. D.B. Liu, Y.M. He, J.D. Dunstan, B. Zhang, Z.P. Gan, P. Hu, and H.M. Ding: Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int. J. Plast. 41, 30 (2013).

    Article  CAS  Google Scholar 

  20. Y.J. Dai, Y. Huan, M. Gao, J. Dong, W. Liu, M.X. Pan, W.H. Wang, and Z.L. Bi: Development of a high-resolution micro-torsion tester for measuring the shear modulus of metallic glass fibers. Meas. Sci. Technol. 26, 025902 (2015).

    Article  CAS  Google Scholar 

  21. J.K. Heyer, S. Brinckmann, J. Pfetzing-Micklich, and G. Eggeler: Microshear deformation of gold single crystals. Acta Mater. 62, 225 (2014).

    Article  CAS  Google Scholar 

  22. N. Wierczorek, G. Laplanche, J-K. Heyer, A.B. Parsa, J. Pfetzing-Micklich, and G. Eggeler: Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments. Acta Mater. 113, 320 (2016).

    Article  CAS  Google Scholar 

  23. P.A. Steinmann, Y. Tardy, and H.E. Hintermann: Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load. Thin Solid Films 154, 333–349 (1987).

    Article  CAS  Google Scholar 

  24. M. Larsson, M. Olsson, P. Hedenqvist, and S. Hogmark: Mechanisms of coating failure as demonstrated by scratch and indentation testing of TiN coated HSS. Surf. Eng. 16, 436–444 (2000).

    Article  CAS  Google Scholar 

  25. B.D. Beak, A.J. Harris, and T.W. Liskiewicz: Review of recent progress in nanoscratch testing. Tribol.-Mater., Surf. Interfaces 7, 87–96 (2013).

    Article  CAS  Google Scholar 

  26. D.D. Maio and S.G. Roberts: Measuring fracture toughness of coatings using FIB-machined microbeams. J. Mater. Res. 20, 299–302 (2005).

    Article  CAS  Google Scholar 

  27. K. Matoy, T. Detzel, M. Muller, C. Motz, and G. Dehm: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surf. Coat. Technol. 204, 878–881 (2009).

    Article  CAS  Google Scholar 

  28. J. Schaufler, C. Schmid, K. Durst, and M. Goken: Determination of the interfacial strength and fracture toughness of a-C:H coatings by in situ microcantilever bending. Thin Solid Films 522, 480–484 (2012).

    Article  CAS  Google Scholar 

  29. K. Chen, Y. Mu, and W.J. Meng: A new experimental approach for evaluating the mechanical integrity of interfaces between hard coatings and substrates. MRS Commun. 4, 19–23 (2014).

    Article  CAS  Google Scholar 

  30. Y. Mu, X. Zhang, J.W. Hutchinson, and W.J. Meng: Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol. J. Mater. Res. 32, 1421–1431 (2017).

    Article  CAS  Google Scholar 

  31. K. Wu, J.Y. Zhang, G. Liu, P. Zhang, P.M. Cheng, J. Li, G.J. Zhang, and J. Sun: Buckling behaviors and adhesion energy of nanostructured Cu/X (X = Nb, Zr) multilayer films on a compliant substrate. Acta Mater. 61, 7889–7903 (2013).

    Article  CAS  Google Scholar 

  32. I. Radchenko, H.P. Anwarali, S.K. Tippabhotla, and A.S. Budiman: Effects of interface shear strength during failure of semicoherent metal/metal nanolaminates: An example of accumulative rollbonded Cu/Nb. Acta Mater. 156, 125–135 (2018).

    Article  CAS  Google Scholar 

  33. C. Mayer, N. Li, N. Mara, and N. Chawla: Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM). Mater. Sci. Eng., A 621, 229 (2015).

    Article  CAS  Google Scholar 

  34. G.T. Gray, K.S. Vecchio, and V. Livescu: Compact forced simple-shear sample for studying shear localization in materials. Acta Mater. 103, 12 (2016).

    Article  CAS  Google Scholar 

  35. J. Peirs, U.P. Verleysen, J. Degrieck, and F. Coghe: The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V. Int. J. Impact Eng. 37, 703 (2010).

    Article  Google Scholar 

  36. C. Mayr, G. Eggeler, G.A. Webster, and G. Peter: Double shear creep testing of superalloy single crystals at temperatures above 1000 °C. Mater. Sci. Eng., A 199, 121 (1995).

    Article  Google Scholar 

  37. J.D. Livingston: Density and distribution of dislocations in deformed copper crystals. Acta Metall. 10, 229–239 (1962).

    Article  CAS  Google Scholar 

  38. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  39. F. Tang and J.M. Schoenung: Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation. Mater. Sci. Eng., A 493, 101 (2008).

    Article  CAS  Google Scholar 

  40. Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, and L. Lu: Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217 (2013).

    Article  CAS  Google Scholar 

  41. O. Anderoglu, A. Misra, J. Wang, R.G. Hoagland, J.P. Hirth, and X. Zhang: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26, 875 (2010).

    Article  CAS  Google Scholar 

  42. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, and J.P. Hirth: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262 (2010).

    Article  CAS  Google Scholar 

  43. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang: Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. Scr. Mater. 64, 149 (2011).

    Article  CAS  Google Scholar 

  44. N. Li, J. Wang, X. Zhang, and A. Misra: In situ TEM study of dislocation-twin boundaries interaction in nanotwinned Cu films. JOM 63, 62 (2011).

    Google Scholar 

  45. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893–979 (2008).

    Article  CAS  Google Scholar 

  46. V.M. Segal: Materials processing by simple shear. Mater. Sci. Eng., A 197, 157–164 (1995).

    Article  Google Scholar 

  47. V.M. Segal: Severe plastic deformation: Simple shear versus pure shear. Mater. Sci. Eng., A 338, 331–344 (2002).

    Article  Google Scholar 

  48. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881–981 (2006).

    Article  CAS  Google Scholar 

  49. B. Derby: The dependence of grain size on stress during dynamic recrystallization. Acta Metall. Mater. 39, 955–962 (1991).

    Article  CAS  Google Scholar 

  50. E. Bagherpour, F. Qods, R. Ebrahimi, and H. Miyamoto: Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): Role of shear reversal. Mater. Sci. Eng., A 666, 324–338 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.G.G, S.M., and N.L. acknowledge the support of the U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program, and the Los Alamos National Laboratory (LANL)/Laboratory Directed Research & Development (LDRD) Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. Gigax.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigax, J.G., Baldwin, J.K., Sheehan, C.J. et al. Microscale shear specimens for evaluating the shear deformation in single-crystal and nanocrystalline Cu and at Cu–Si interfaces. Journal of Materials Research 34, 1574–1583 (2019). https://doi.org/10.1557/jmr.2019.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.104

Navigation