Skip to main content
Log in

Deformation behavior of core–shell nanowire structures with coherent and semi-coherent interfaces

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical properties of core–shell bimetallic composite nanowires, forming the bases of nanoporous metallic foams, have been investigated and compared with pure metal nanowires using molecular dynamics simulations. In the current study, pure copper and gold nanowires under uniaxial loading were tested at room temperature and compared to composite nanowires of the same materials (core) with a nickel coating (shell). The core radius ranged from 1 to 15 nm, and the shell thickness ranged from 0.1 to 5 nm. The tension strain was performed along the [001] direction under room temperature. Both coherent and semi-coherent composite nanowires were studied, and the effect of coating layer thickness was investigated. The strengthening mechanisms of the core–shell structures due to the presence of the two different types of interfaces were investigated for various nickel thicknesses. The atomistic simulation results revealed that the addition of the nickel shell strengthens the structure when the layer thickness exceeds a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, and L. Dai: Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem., Int. Ed. 51, 12124 (2012).

    Article  CAS  Google Scholar 

  2. S. Bhaviripudi, E. Mile, S.A. Steiner, A.T. Zare, M.S. Dresselhaus, A.M. Belcher, and J. Kong: CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 129, 1516 (2007).

    Article  CAS  Google Scholar 

  3. A.C. Patel, S. Li, C. Wang, W. Zhang, and Y. Wei: Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem. Mater. 19, 1231 (2007).

    Article  CAS  Google Scholar 

  4. S.F. Corbin, R.M.C. Clemmer, and Q. Yang: Development and characterization of porous composites for solid oxide fuel cell anode conduction layers using ceramic-filled highly porous Ni foam. J. Am. Ceram. Soc. 92, 331 (2009).

    Article  CAS  Google Scholar 

  5. C-J. Tseng, Y-J. Heush, C-J. Chiang, Y-H. Lee, and K-R. Lee: Application of metal foams to high temperature PEM fuel cells. Int. J. Hydrogen Energy 41, 16196 (2016).

    Article  CAS  Google Scholar 

  6. R. Shinde and M. Tayade: Remarkable hydrogen storage on beryllium oxide clusters: First-principles calculations. J. Phys. Chem. C 118, 17200 (2014).

    Article  CAS  Google Scholar 

  7. S. Mellouli, H. Dhaou, F. Askri, A. Jemni, and S. Ben Nasrallah: Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger. Int. J. Hydrogen Energy 34, 9393 (2009).

    Article  CAS  Google Scholar 

  8. J. Biener, G.W. Nyce, A.M. Hodge, M.M. Biener, A.V. Hamza, and S.A. Maier: Nanoporous plasmonic metamaterials. Adv. Mater. 20, 1211 (2008).

    Article  CAS  Google Scholar 

  9. J. Biener, A.M. Hodge, and A.V. Hamza: Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 87, 121908 (2005).

    Article  CAS  Google Scholar 

  10. Q. Zhou, J.Y. Xie, F. Wang, P. Huang, K.W. Xu, and T.J. Lu: The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech. Sin. 31, 319 (2015).

    Article  Google Scholar 

  11. I.N. Mastorakos, H.M. Zbib, and D.F. Bahr: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009).

    Article  CAS  Google Scholar 

  12. R.G. Hoagland, R.J. Kurtz, and C.H. Henager, Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).

    Article  CAS  Google Scholar 

  13. N. Abdolrahim, H.M. Zbib, and D.F. Bahr: Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014).

    Article  CAS  Google Scholar 

  14. A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, and J.D. Embury: Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).

    Article  CAS  Google Scholar 

  15. I.N. Mastorakos, N. Abdolrahim, and H.M. Zbib: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).

    Article  Google Scholar 

  16. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82, 643 (2002).

    CAS  Google Scholar 

  17. S. Shao and S.N. Medyanik: Dislocation–interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 37, 315 (2010).

    Article  Google Scholar 

  18. D. Mitlin, A. Misra, T.E. Mitchell, J.P. Hirth, and R.G. Hoagland: Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos. Mag. 85, 3379 (2005).

    Article  CAS  Google Scholar 

  19. S. Shao and J. Wang: Relaxation mechanisms, structure and properties of semi-coherent interfaces. Metals 5, 1887 (2015).

    Article  CAS  Google Scholar 

  20. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).

    CAS  Google Scholar 

  21. R.G. Hoagland, J.P. Hirth, and A. Misra: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 (2006).

    Article  CAS  Google Scholar 

  22. N. Abdolrahim, I.N. Mastorakos, and H.M. Zbib: Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys. Rev. B 81, 054117 (2010).

    Article  CAS  Google Scholar 

  23. P. Li, Y. Yang, X. Luo, N. Jin, G. Liu, and Y. Gao: Structural evolution of copper–silver bimetallic nanowires with core–shell structure revealed by molecular dynamics simulations. Comput. Mater. Sci. 137 (Suppl. C), 289 (2017).

    Article  CAS  Google Scholar 

  24. X-Y. Sun, Y. Xu, G-F. Wang, Y. Gu, and X-Q. Feng: Effects of surface atomistic modification on mechanical properties of gold nanowires. Phys. Lett. A 379, 1893 (2015).

    Article  CAS  Google Scholar 

  25. N. Abdolrahim, D.F. Bahr, B. Revard, C. Reilly, J. Ye, T.J. Balk, and H.M. Zbib: The mechanical response of core–shell structures for nanoporous metallic materials. Philos. Mag. 93, 736 (2013).

    Article  CAS  Google Scholar 

  26. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  27. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  28. M.S. Daw, S.M. Foiles, and M.I. Baskes: The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 9, 251 (1993).

    Article  CAS  Google Scholar 

  29. A.F. Voter and S.P. Chen: Accurate interatomic potentials for Ni, Al, and Ni3Al. MRS Online Proc. Libr. 82, 175–180 (1986).

    Article  Google Scholar 

  30. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).

    Article  CAS  Google Scholar 

  31. L. Ward, A. Agrawal, K.M. Flores, and W. Windl: Rapid production of accurate embedded-atom method potentials for metal alloys. ArXiv12090619 Cond-Mat Physicsphysics (2012).

  32. J.A. Zimmerman, H. Gao, and F.F. Abraham: Generalized stacking fault energies for embedded atom FCC metals. Modell. Simul. Mater. Sci. Eng. 8, 103 (2000).

    Article  CAS  Google Scholar 

  33. J. Davoodi, S. Dadashi, and M. Yarifard: Molecular dynamics simulations of the melting of Al–Ni nanowires. Philos. Mag. 96, 2300 (2016).

    Article  CAS  Google Scholar 

  34. S. Divi and A. Chatterjee: Understanding segregation behavior in AuPt, NiPt, and AgAu bimetallic nanoparticles using distribution coefficients. J. Phys. Chem. C 120, 27296 (2016).

    Article  CAS  Google Scholar 

  35. T. Zientarski and D. Chocyk: Structure and stress in Cu/Au and Fe/Au systems: A molecular dynamics study. Thin Solid Films 562 (Suppl. C), 347 (2014).

    Article  CAS  Google Scholar 

  36. P. Hirel: Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212 (2015).

    Article  CAS  Google Scholar 

  37. J.D. Honeycutt and H.C. Andersen: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).

    Article  CAS  Google Scholar 

  38. D. Faken and H. Jónsson: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994).

    Article  CAS  Google Scholar 

  39. A. Stukowski, V.V. Bulatov, and A. Arsenlis: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    Article  Google Scholar 

  40. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  41. J. Marian and J. Knap: Breakdown of self-similar hardening behavior in Au nanopillar microplasticity. Int. J. Multiscale Comput. Eng. 5, 287–294 (2007).

    Article  CAS  Google Scholar 

  42. Y. Gan and J.K. Chen: Molecular dynamics study of size, temperature and strain rate effects on mechanical properties of gold nanofilms. Appl. Phys. A 95, 357 (2009).

    Article  CAS  Google Scholar 

  43. A. Misra and R.G. Hoagland: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).

    Article  CAS  Google Scholar 

  44. A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  45. J.P. Hirth and X. Feng: Critical layer thickness for misfit dislocation stability in multilayer structures. J. Appl. Phys. 67, 3343 (1990).

    Article  Google Scholar 

  46. I.N. Mastorakos, A. Bellou, D.F. Bahr, and H.M. Zbib: Size-dependent strength in nanolaminate metallic systems. J. Mater. Res. 26, 1179 (2011).

    Article  CAS  Google Scholar 

  47. H.J. Chu, J. Wang, C.Z. Zhou, and I.J. Beyerlein: Self-energy of elliptical dislocation loops in anisotropic crystals and its application for defect-free core/shell nanowires. Acta Mater. 59, 7114 (2011).

    Article  CAS  Google Scholar 

  48. A. Misra and H. Krug: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3, 217 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant No. CMMI-1634640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Ke.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, H., Mastorakos, I. Deformation behavior of core–shell nanowire structures with coherent and semi-coherent interfaces. Journal of Materials Research 34, 1093–1102 (2019). https://doi.org/10.1557/jmr.2018.491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.491

Navigation