Skip to main content
Log in

Ultrafine bamboo-char as a new reinforcement in poly(lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, varying contents of ultrafine bamboo-char (UFBC) were introduced into PLA/bamboo particle (BP) biocomposites as new reinforcements to improve the mechanical, thermal, and morphological properties of the biocomposites. The new strategy was aiming to realize the synergistic effects of reinforcement and toughening of poly(lactic acid) (PLA) composites through a simple method without surface modification and other additives. The maximum tensile strength, modulus, and elongation at break of 45.20 MPa, 540.50 MPa, and 7.53% were reached at 5.0 wt% UFBC content, which were slightly lower than those of pure PLA. The maximum modulus of elasticity of the ternary biocomposites was 5316.1 MPa at 5.0 wt% UFBC content, which was approximately 2 times higher than the pure PLA. Impact strength reached a maximum value of 38.56 J/m when the UFBC content was 5 wt%, and improved by 376% compared with pure PLA of 7.88 J/m. Meanwhile, compared with the PLA/BP binary composite of 20.50 J/m, it improved 88%. A concrete-like microstructure system was achieved (i.e., cement, sand, and rebar corresponding to PLA, UFBC, and BP, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C. Li, J. Guo, T. Jiang, X. Zhang, L. Xia, H. Wu, S. Guo, and X. Zhang: Extensional flow-induced hybrid crystalline fibrils (shish) in CNT/PLA nanocomposite. Carbon 129, 720 (2018).

    Article  CAS  Google Scholar 

  2. P. Sookprasert and N. Hinchiranan: Morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/natural rubber (NR) blends compatibilized by NR-graft-PLA. J. Mater. Res. 32, 788 (2017).

    Article  CAS  Google Scholar 

  3. Q. Yao, J.G.L. Cosme, T. Xu, J.M. Miszuk, P.H.S. Picciani, H. Fong, and H. Sun: Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115, 115 (2017).

    Article  CAS  Google Scholar 

  4. C. Hu, Z. Li, Y. Wang, J. Gao, K. Dai, G. Zheng, C. Liu, C. Shen, H. Song, and Z. Guo: Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes. J. Mater. Chem. C 5, 2318 (2017).

    Article  CAS  Google Scholar 

  5. M. Murariu and P. Dubois: PLA composites: From production to properties. Adv. Drug Deliver. Rev. 107, 17 (2016).

    Article  CAS  Google Scholar 

  6. H. Tsuji: Poly(lactic acid) stereocomplexes: A decade of progress. Adv. Drug Deliver. Rev. 107, 97 (2016).

    Article  CAS  Google Scholar 

  7. B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem: Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliver. Rev. 107, 163 (2016).

    Article  CAS  Google Scholar 

  8. V. Nagarajan, A.K. Mohanty, and M. Misratt: Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chem. Eng. 4, 2899 (2016).

    Article  CAS  Google Scholar 

  9. C. Li, F. Wang, P. Chen, Z. Zhang, R. Guidoin, and L. Wang: Preventing collapsing of vascular scaffolds: The mechanical behavior of PLA/PCL composite structure prostheses during in vitro degradation. J. Mech. Behav. Biomed. Mater. 75, 455 (2017).

    Article  CAS  Google Scholar 

  10. I. Kelnar, J. Kratochvil, L. Kapralkova, A. Zhigunov, and M. Nevoralova: Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. J. Mech. Behav. Biomed. Mater. 71, 271 (2017).

    Article  CAS  Google Scholar 

  11. L.H. Geng, X.F. Peng, X. Jing, L.W. Li, A. Huang, B.P. Xu, B.Y. Chen, and H.Y. Mi: Investigation of poly(L-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. J. Mater. Res. 31, 348 (2016).

    Article  CAS  Google Scholar 

  12. C.E.Y. Erpek, G. Ozkoc, and U. Yilmazer: Effects of halloysite nanotubes on the performance of plasticized poly(lactic acid)-based composites. Polym. Compos. 37, 3134 (2016).

    Article  Google Scholar 

  13. C.E.Y. Erpek, G. Ozkoc, and U. Yilmazer: Comparison of natural halloysite with synthetic carbon nanotubes in poly(lactic acid) based composites. Polym. Compos. 38, 2337 (2017).

    Article  CAS  Google Scholar 

  14. Z. Li, B.H. Tan, T. Lin, and C. He: Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 62, 22 (2016).

    Article  Google Scholar 

  15. J-Z. Liang and F-J. Li: Mechanical properties of poly(l-lactic acid) composites filled with mesoporous silica. Polym. Compos. 38, 1118 (2017).

    Article  CAS  Google Scholar 

  16. Y. Zhou, L. Lei, B. Yang, J. Li, and J. Ren: Preparation of PLA-based nanocomposites modified by nano-attapulgite with good toughness-strength balance. Polym. Test. 60, 78 (2017).

    Article  CAS  Google Scholar 

  17. A. Iwatake, M. Nogi, and H. Yano: Cellulose nanofiber-reinforced polylactic acid. Compos. Sci. Technol. 68, 2103 (2008).

    Article  CAS  Google Scholar 

  18. J-W. Rhim, H-M. Park, and C-S. Ha: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629 (2013).

    Article  CAS  Google Scholar 

  19. S. Qian and K. Sheng: PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 148, 59 (2017).

    Article  CAS  Google Scholar 

  20. S. Alippilakkotte and L. Sreejith: Benign route for the modification and characterization of poly(lactic acid) (PLA) scaffolds for medicinal application. J. Appl. Polym. Sci. 135, 46056 (2018).

    Article  Google Scholar 

  21. S. Deng, J. Ma, Y. Guo, F. Chen, and Q. Fu: One-step modification and nanofibrillation of microfibrillated cellulose for simultaneously reinforcing and toughening of poly(epsilon-caprolactone). Compos. Sci. Technol. 157, 168 (2018).

    Article  CAS  Google Scholar 

  22. F-L. Jin, H. Zhang, S-S. Yao, and S-J. Park: Effect of surface modification on impact strength and flexural strength of poly(lactic acid)/silicon carbide nanocomposites. Macromol. Res. 26, 211 (2018).

    Article  CAS  Google Scholar 

  23. M. Jing, J. Che, S. Xu, Z. Liu, and Q. Fu: The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide versus silane coupling agents. Appl. Surf. Sci. 435, 1046 (2018).

    Article  CAS  Google Scholar 

  24. S. Qian, H. Mao, K. Sheng, J. Lu, Y. Luo, and C. Hou: Effect of low-concentration alkali solution pretreatment on the properties of bamboo particles reinforced poly(lactic acid) composites. J. Appl. Polym. Sci. 130, 1667 (2013).

    Article  CAS  Google Scholar 

  25. S. Qian, H. Mao, E. Zarei, and K. Sheng: Preparation and characterization of maleic anhydride compatibilized poly(lactic acid)/bamboo particles biocomposites. J. Polym. Environ. 23, 341 (2015).

    Article  CAS  Google Scholar 

  26. S. Qian, H. Wang, E. Zarei, and K. Sheng: Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Composites, Part B 82, 23 (2015).

    Article  CAS  Google Scholar 

  27. W. Liu, T. Xie, R. Qiu, and M. Fan: N-methylol acrylamide grafting bamboo fibers and their composites. Compos. Sci. Technol. 117, 100 (2015).

    Article  CAS  Google Scholar 

  28. S. Zhang, W. Yao, H. Zhang, and K. Sheng: Polypropylene biocomposites reinforced with bamboo particles and ultrafine bamboo-char: The effect of blending ratio. Polym. Compos. 39, E640 (2018).

    Article  CAS  Google Scholar 

  29. S. Qian, K. Sheng, W. Yao, and H. Yu: Poly(lactic acid) biocomposites reinforced with ultrafine bamboo-char: Morphology, mechanical, thermal, and water absorption properties. J. Appl. Polym. Sci. 133, 43425 (2016).

    Article  Google Scholar 

  30. I. Oral: Determination of elastic constants of epoxy resin/biochar composites by ultrasonic pulse echo overlap method. Polym. Compos. 37, 2907 (2016).

    Article  CAS  Google Scholar 

  31. Z. You and D. Li: The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites. Mater. Lett. 112, 197 (2013).

    Article  CAS  Google Scholar 

  32. Z. You and D. Li: Highly filled bamboo charcoal powder reinforced ultra-high molecular weight polyethylene. Mater. Lett. 122, 121 (2014).

    Article  CAS  Google Scholar 

  33. S. Li, X. Li, C. Chen, H. Wang, Q. Deng, M. Gong, and D. Li: Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Compos. Sci. Technol. 132, 31 (2016).

    Article  CAS  Google Scholar 

  34. M-p. Ho, K-t. Lau, H. Wang, and D. Hui: Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites, Part B 81, 14 (2015).

    Article  CAS  Google Scholar 

  35. O. Das, A.K. Sarmah, and D. Bhattacharyya: Nanoindentation assisted analysis of biochar added biocomposites. Composites, Part B 91, 219 (2016).

    Article  CAS  Google Scholar 

  36. Y. Li, C. Chen, J. Li, and X.S. Sun: Photoactivity of Poly(lactic acid) nanocomposites modulated by TiO2 nanofillers. J. Appl. Polym. Sci. 131, 40241 (2014).

    Google Scholar 

  37. S-Y. Fu, X-Q. Feng, B. Lauke, and Y-W. Mai: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites, Part B 39, 933 (2008).

    Article  Google Scholar 

  38. Z. Su, K. Huang, and M. Lin: Thermal and mechanical properties of poly(lactic acid)/modified carbon black composite. J. Macromol. Sci., Part B: Phys. 51, 1475 (2012).

    Article  CAS  Google Scholar 

  39. H. Teymoorzadeh and D. Rodrigue: Morphological, mechanical, and thermal properties of injection molded polylactic acid foams/composites based on wood flour. J. Cell. Plast. 54, 179 (2018).

    Article  CAS  Google Scholar 

  40. S.R. Lanjewar, P.S. Bari, D.P. Hansora, and S. Mishra: Preparation and analysis of polypropylene composites with maleated tea dust particles. Sci. Eng. Compos. Mater. 25, 373 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the National Natural Science Foundation of China (51503068), the Research Funds of NBU (No. ZX2016000752), the Foundation of Ningbo University (No. XYL17025), and the K.C. Wong Magna Fund in Ningbo University for financial support. This work was supported by State Key Laboratory of Pulp and Paper Engineering (201814).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoping Qian or Yiping Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, S., Tao, Y., Ruan, Y. et al. Ultrafine bamboo-char as a new reinforcement in poly(lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties. Journal of Materials Research 33, 3870–3879 (2018). https://doi.org/10.1557/jmr.2018.290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.290

Navigation