Skip to main content
Log in

Effect of indium ion implantation on crystallization kinetics and phase transformation of anodized titania nanotubes using in-situ high-temperature radiation diffraction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titania nanotube arrays were synthesized electrochemically by anodization of titanium foils, and the synthesized titania nanotubes were then implanted with indium ions. The effect of In-ions implantation on crystallization and phase transformation of titania was investigated using in-situ high-temperature X-ray diffraction and synchrotron radiation diffraction from room temperature to 1000 °C. Diffraction results show that crystalline anatase first appeared at 400 °C in both the non-implanted and the In-implanted materials. The temperature at which crystalline rutile temperature appeared was 600 °C for non-implanted materials and 700 °C for In-implanted materials, and the indium implantation inhibited the anatase-to-rutile transformation. Although In3+ is expected to increase oxygen vacancy concentration and then the rate of titania transformation, the observations are consistent with implanted In-ions occupying the Ti sublattice substitutionally and then inhibiting the transformation. The relatively difficult anatase-to-rutile transformation in the In-implanted material appears to result from the relatively large In3+ radius (0.080 nm). The In3+ partly replaces the Ti4+ (0.061 nm), which provides a greater structural rigidity and prevents relaxation in the Ti bonding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. H. Li, L. Cao, W. Liu, G. Su, and B. Dong: Synthesis and investigation of TiO2 nanotube arrays prepared by anodization and their photocatalytic activity. Ceram. Int. 38, 5791 (2012).

    Article  CAS  Google Scholar 

  2. D.V. Bavykin, A.N. Kulak, V.V. Shvalagin, N.S. Andryushna, and O.L. Stroyuk: Photocatalytic properties of rutile nanoparticles obtained via low temperature route from titanate nanotubes. J. Photochem. Photobiol., A 218, 231 (2011).

    Article  CAS  Google Scholar 

  3. O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, and E.C. Dickey: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).

    Article  CAS  Google Scholar 

  4. M. Inagakia, N. Kondoa, R. Nonakaa, E. Itob, M. Toyodac, K. Sogabec, and T. Tsumura: Structure and photoactivity of titania derived from nanotubes and nanofibers. J. Hazard. Mater. 161, 1514 (2009).

    Article  Google Scholar 

  5. M. Senna, N. Myers, A. Aimable, V. Laporte, C. Pulgarin, O. Baghriche, and P. Bowen: Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. J. Mater. Res. 28, 354 (2013).

    Article  CAS  Google Scholar 

  6. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki: TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 11, 3 (2007).

    Article  CAS  Google Scholar 

  7. H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, and T. Rajh: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560 (2011).

    Article  CAS  Google Scholar 

  8. D. Yanga, H. Parka, S. Choa, H. Kima, and W. Choi: TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area. J. Phys. Chem. Solids 69, 1272 (2008).

    Article  Google Scholar 

  9. D. Hanaor and C. Sorrell: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).

    Article  CAS  Google Scholar 

  10. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1, 1140 (2009).

    Article  CAS  Google Scholar 

  11. D. Kim, N. Enomoto, Z. Nakagawa, and K. Kawamura: Molecular dynamic simulation in titanium dioxide polymorphs: Rutile, brookite, and anatase. J. Am. Ceram. Soc. 79, 1095 (1996).

    Article  CAS  Google Scholar 

  12. G. Liu, L. Wang, H.G. Yang, H.M. Cheng, and G.Q.M. Lu: Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2010).

    Article  Google Scholar 

  13. H. Albetran, H. Haroosh, Y. Dong, V.M. Prida, B.H. O’Connor, and I.M. Low: Phase transformations and crystallization kinetics in electrospun TiO2 nanofibers in air and argon atmospheres. Appl. Phys. A 116, 161 (2014).

    Article  CAS  Google Scholar 

  14. H. Albetran, H. Haroosh, Y. Dong, B.H. O’Connor, and I.M. Low: Effect of atmosphere on crystallisation kinetics and phase relations in electrospun TiO2 nanofibres. Ceram. Trans. 246, 125 (2013).

    Google Scholar 

  15. A. Ghicov, H. Tsuchiya, J.M. Macak, and P. Schmuki: Annealing effects on the photoresponse of TiO2 nanotubes. Phys. Status Solidi A 203, 28 (2006).

    Article  Google Scholar 

  16. Z. Liu, X. Yan, W. Chu, and D. Li: Effects of impurities containing phosphorus on the surface properties and catalytic activity of TiO2 nanotube arrays. Appl. Surf. Sci. 257, 1295 (2010).

    Article  CAS  Google Scholar 

  17. R.P. Antony, T. Mathews, P.K. Ajikumar, D.N. Krishna, S. Dash, and A.K. Tyagi: Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films. Mater. Res. Bull. 47, 4491 (2012).

    Article  CAS  Google Scholar 

  18. Y. Iida and S. Ozaki: Grain growth and phase transformation of titanium oxide during calcination. J. Am. Ceram. Soc. 44, 120 (1961).

    Article  CAS  Google Scholar 

  19. R.D. Shannon and J.A. Pask: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).

    Article  CAS  Google Scholar 

  20. H. Li, W. Zhang, and W. Pan: Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio. J. Am. Ceram. Soc. 94, 3184 (2011).

    Article  CAS  Google Scholar 

  21. J. Lee, T. Ha, M. Hong, and H. Park: The effect of porosity on the CO sensing properties of TiO2 xerogel thin films. Thin Solid Films 529, 98 (2013).

    Article  CAS  Google Scholar 

  22. Z. Zainal and C.Y. Lee: Properties and photoelectrocatalytic behaviour of sol-gel derived TiO2 thin films. J. Sol-Gel Sci. Technol. 37, 19 (2006).

    Article  CAS  Google Scholar 

  23. D. Monti, A. Ponrouch, M. Estruga, M.R. Palacin, J.A. Ayllon, and A. Roig: Microwaves as a synthetic route for preparing electrochemically active TiO2 nanoparticles. J. Mater. Res. 28, 340 (2013).

    Article  CAS  Google Scholar 

  24. C. Arunchandran, S. Ramya, R.P. George, and U.K. Mudali: Corrosion inhibitor storage and release property of TiO2 nanotube powder synthesized by rapid breakdown anodization method. Mater. Res. Bull. 48, 635 (2012).

    Article  Google Scholar 

  25. N. Baram, D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon, and Y. Ein-Eli: Enhanced photo-efficiency of immobilized TiO2 catalyst via intense anodic bias. Electrochem. Commun. 9, 1684 (2007).

    Article  CAS  Google Scholar 

  26. K.P. Beh, F.K. Yam, S.S. Tneh, and Z. Hassan: Fabrication of titanium dioxide nanofibers via anodic oxidation. Appl. Surf. Sci. 257, 4706 (2011).

    Article  CAS  Google Scholar 

  27. J. Liao, S. Lin, N. Pan, D. Li, S. Li, and J. Li: Free-standing open-ended TiO2 nanotube membranes and their promising through-hole applications. Chem. Eng. J. 211–212, 343 (2012).

    Article  Google Scholar 

  28. R. Sanchez-Tovar, K. Lee, J. Garcia-Anton, and P. Schmuki: Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochem. Commun. 26, 1 (2012).

    Article  Google Scholar 

  29. D.V. Bavykin, A.N. Kulak, and F.C. Walsh: Control over the hierarchical structure of titanate nanotube agglomerates. Langmuir 27, 5644 (2011).

    Article  CAS  Google Scholar 

  30. D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, J.M. Friedrich, and F.C. Walsh: Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J. Phys. Chem. B 109, 19422 (2005).

    Article  CAS  Google Scholar 

  31. A.W. Tan, B. Pingguan-Murphy, R. Ahmad, and S.A. Akbar: Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 38, 4421 (2012).

    Article  CAS  Google Scholar 

  32. I.M. Low, H. Albetran, V.M. Prida, V. Vega, P. Manurung, and M. Ionescu: A comparative study on crystallization behavior, phase stability, and binding energy in pure and Cr-doped TiO2 nanotubes. J. Mater. Res. 28, 304 (2013).

    Article  CAS  Google Scholar 

  33. H. Albetran, B.H. O’Connor, and I.M. Low: Effect of vanadium ion implantation on the crystallization kinetics and phase transformation of electrospun TiO2 nanofibers. Appl. Phys. A 120, 623 (2015).

    Article  CAS  Google Scholar 

  34. K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, and K.J.D. MacKenzie: Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 84, 1591 (2001).

    Article  CAS  Google Scholar 

  35. E.H. Kisi: Rietveld analysis of powder diffraction patterns. Mater. Forum 18, 135 (1994).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the funding from the Australian Institute of Nuclear Science and Engineering (AINGRA-11134), and the Australian Synchrotron (PD-3611). The authors would like to thank Prof. V.M. Prida from Department of Physics, University of Oviedo for XRD collection. Dr M. Ionescu of ANSTO assisted with work on ion-implantation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to It Meng Low.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albetran, H., Low, I.M. Effect of indium ion implantation on crystallization kinetics and phase transformation of anodized titania nanotubes using in-situ high-temperature radiation diffraction. Journal of Materials Research 31, 1588–1595 (2016). https://doi.org/10.1557/jmr.2016.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.83

Navigation