Skip to main content
Log in

Mechanical properties and anisotropy of thermal conductivity of Fe3−xCrxO4 (x = 0–3)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ground state properties of Fe3−xCrxO4 (x = 0–3) compounds were studied using first principles calculation. Stress–strain methods were used to evaluate elastic constants of these compounds. These compounds are mechanically stable structures, because they satisfy the mechanical stability criteria. The mechanical moduli were estimated using the Voigt–Reuss–Hill approximation. The calculated bulk moduli of Fe3O4, Fe2CrO4, FeCr2O4, and Cr3O4 are 190.9 GPa, 135.5 GPa, 180.1 GPa, and 235.6 GPa, respectively. Both of anisotropic indexes and 3-D surface contour were used to illustrate the elastic anisotropy. Debye temperature and anisotropy of acoustic velocity of Fe3−xCrxO4 compounds were also investigated. The maximum Debye temperature is attributing to Cr3O4 with 507.6 K among Fe3−xCrxO4 compounds. The minimum thermal conductivity of Fe3−xCrxO4 compounds was estimated by both Clarke’s model and Cahill’s model. Moreover, 3-D surface contour of the anisotropic thermal conductivity of Fe3−xCrxO4 compounds was obtained based on the Clarke’s model and anisotropic Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. R. Viswanathan and W. Bakker: Materials for ultrasupercritical coal power plants-boiler materials: Part 1. J. Mater. Eng. Perform.10 (1), 81–95 (2001).

    CAS  Google Scholar 

  2. Q. Shen and H.G. Liu: Application of new type heat-resistant steel T/P92 and T/P122 in ultra-supercritical unit and quality control. Elec. Power Const.31 (10), 71–75 (2010).

    Google Scholar 

  3. R. Viswanathan, J. Sarver, and J.M. Tanzosh: Boiler materials for ultra-supercritical coal power plants—Steamside oxidation. J. Mater. Eng. Perform.15 (3), 255–274 (2006).

    CAS  Google Scholar 

  4. X.M. Li, Y. Zou, Z.W. Zhang, Z.D. Zou, and B.S. Du: Intergranular corrosion of weld metal of super type 304H steel during 650 °C aging. Corrosion68 (5), 379–387 (2012).

    CAS  Google Scholar 

  5. S.Q. Zhao, X.S. Xie, and G.D. Smith: The oxidation behavior of the new nickel-based superalloy Inconel 740 with and without Na2SO4 deposit. Surf. Coat. Technol.185 (2), 178–183 (2004).

    CAS  Google Scholar 

  6. K. Pantleon and M. Montgomery: Phase identification and internal stress analysis of steamside oxides on plant exposed superheater tubes. Metall. Mater. Trans. A43 (5), 1477–1486 (2012).

    CAS  Google Scholar 

  7. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, and H.E. Moussaoui: Electronic and magnetic structures of Fe3O4 ferrimagnetic investigated by first principle, mean field and series expansions calculations. J. Magn. Magn. Mater.378, 37–40 (2015).

    CAS  Google Scholar 

  8. H.T. Jeng, G.Y. Guo, and D.J. Huang: Charge-orbital ordering and Verwey transition in magnetite. Phys. Rev. Lett.93 (15), 156403 (2004).

    Google Scholar 

  9. Y. Wang, S.H. Lee, L.A. Zhang, S.L. Shang, L.Q. Chen, A.D. Kovacs, and Z.K. Liu: Quantifying charge ordering by density functional theory: Fe3O4 and CaFeO3. Chem. Phys. Lett.607, 81–84 (2014).

    CAS  Google Scholar 

  10. A. Mohammadi, M. Barikani, and M. Barmar: Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polym. Bull.72 (2), 219–234 (2015).

    CAS  Google Scholar 

  11. C.R. Lin, Y.M. Chu, and S.C. Wang: Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater. Lett.60 (4), 447–450 (2006).

    CAS  Google Scholar 

  12. T. Sato, T. Iijima, M. Seki, and N. Inagaki: Magnetic properties of ultrafine ferrite particles. J. Magn. Magn. Mater.65 (2), 252–256 (1987).

    CAS  Google Scholar 

  13. D. Odkhuu, P. Taivansaikhan, W.S. Yun, and S.C. Hong: A first-principles study of magnetostrictions of Fe3O4 and CoFe2O4. J. Appl. Phys.115 (17), 17A916 (2014).

    Google Scholar 

  14. Y.H. Cheng, L.Y. Li, W.H. Wang, H. Liu, S.W. Ren, X.Y. Cui, and R.K. Zheng: Tunable electrical and magnetic properties of half-metallic ZnxFe3−xO4 from first principles. Phys. Chem. Chem. Phys.13, 21243–21247 (2011).

    CAS  Google Scholar 

  15. M. Fonin, R. Pentcheva, Y.S. Dedkov, M. Sperlich, D.V. Vyalikh, M. Scheffler, U. Rüdiger, and G. Güntherodt: Surface electronic structure of the Fe3O4(100): Evidence of a half-metal to metal transition. Phys. Rev. B: Condens. Matter Mater. Phys.72, 104436 (2005).

    Google Scholar 

  16. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter14 (11), 2717–2744 (2002).

    CAS  Google Scholar 

  17. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter Mater. Phys.41 (11), 7892–7895 (1990).

    CAS  Google Scholar 

  18. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett.77 (18), 3865–3868 (1996).

    CAS  Google Scholar 

  19. Y.Z. Liu, Y.H. Jiang, J. Feng, and R. Zhou: Elasticity, electronic properties and hardness of MoC investigated by first principles calculations. Phys. B419, 45–50 (2013).

    CAS  Google Scholar 

  20. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys.13 (12), 5188–5192 (1976).

    Google Scholar 

  21. L. Fast, J.M. Wills, B. Johansson, and O. Eriksson: Elastic constants of hexagonal transition metals: Theory. Phys. Rev. B: Condens. Matter Mater. Phys.51 (24), 17431–17438 (1995).

    CAS  Google Scholar 

  22. Y.Z. Liu, Y.H. Jiang, J.D. Xing, R. Zhou, and J. Feng: Mechanical properties and electronic structures of M23C6 (M = Fe, Cr, Mn)-type multicomponent carbides. J. Alloys Compd.648, 874–880 (2015).

    CAS  Google Scholar 

  23. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys.84 (9), 4891–4904 (1998).

    CAS  Google Scholar 

  24. B. Xiao, J. Feng, C.T. Zhou, Y.H. Jiang, and R. Zhou: Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides. J. Appl. Phys.109 (2), 023507 (2011).

    Google Scholar 

  25. J. Wu, X.Y. Chong, R. Zhou, Y.H. Jiang, and J. Feng: Structure, stability, mechanical and electronic properties of Fe–P binary compounds by first-principles calculations. RSC Adv.5, 81943–81956 (2015).

    CAS  Google Scholar 

  26. T.W. He, Y.H. Jiang, R. Zhou, and J. Feng: The electronic structure, mechanical and thermodynamic properties of Mo2XB2 and MoX2B4 (X = Fe, Co, Ni) ternary borides. J. Appl. Phys.118, 075902 (2015).

    Google Scholar 

  27. C.Q. Hu, Z.H. Gao, and X.R. Yang: Fabrication and magnetic properties of Fe3O4 octahedra. Chem. Phys. Lett.429 (5), 513–517 (2006).

    CAS  Google Scholar 

  28. A. Roldan, D.S. Carballal, and N.H.D. Leeuw: A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4. J. Chem. Phys.138 (20), 204712 (2013).

    CAS  Google Scholar 

  29. H.J. Reichmann and S.D. Jacobsen: High-pressure elasticity of a natural magnetite crystal. Am. Mineral.89 (7), 1061–1066 (2004).

    CAS  Google Scholar 

  30. X. Jiang, J.J. Zhao, and X. Jiang: Correlation between hardness and elastic moduli of the covalent crystals. Comput. Mater. Sci.50 (7), 2287–2290 (2011).

    CAS  Google Scholar 

  31. N. Korozlu, K. Colakoglu, E. Deligoz, and S. Aydin: The elastic and mechanical properties of MB12 (M = Zr, Hf, Y, Lu) as a function of pressure. J. Alloys Compd.546, 157–164 (2013).

    CAS  Google Scholar 

  32. S.F. Pugh: Predicted studies of semiconductors. Philos. Mag.45, 823–843 (1954).

    CAS  Google Scholar 

  33. C.L. Fu and M.H. Yoo: Electronic structure and mechanical behavior of transition-metal aluminides: A first-principles total-energy investigation. Mater. Chem. Phys.32 (1), 25–36 (1992).

    CAS  Google Scholar 

  34. D.G. Pettifor: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol.8 (4), 345–349 (1992).

    CAS  Google Scholar 

  35. S.I. Ranganathan and M.O. Starzewski: Universal elastic anisotropy index. Phys. Rev. Lett.101 (5), 055504 (2008).

    Google Scholar 

  36. J.M. Wang and J.F. Sun: Elastic and thermodynamic properties of IrN2 under pressure. Phys. Status Solidi B247 (4), 921–926 (2010).

    CAS  Google Scholar 

  37. J. Feng, B. Xiao, J. Chen, Y. Du, J. Yu, and R. Zhou: Stability, thermal and mechanical properties of PtxAly compounds. Mater. Des.32 (6), 3231–3239 (2011).

    CAS  Google Scholar 

  38. J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke: Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Mater.60, 3380–3392 (2012).

    CAS  Google Scholar 

  39. D.R. Clarke: Materials selection guidelines for low thermal conductivity thermal barrier coating. Surf. Coat. Technol.163, 67–74 (2003).

    Google Scholar 

  40. D.G. Cahill, S.K. Watson, and R.O. Pohl: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B: Condens. Matter Mater. Phys.46 (10), 6131–6140 (1992).

    CAS  Google Scholar 

  41. J. Feng, B. Xiao, R. Zhou, and W. Pan: Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr. Mater.68 (9), 727–730 (2013).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Shaanxi Province of China (2013JQ6009), the 863 project in China (No. 2013AA031203), the Special Funds for Strategic Emerging Industries Core Technology Research of Guangdong Province in China (No. 2012A090100018), Postdoctoral Science Foundation funded project of China (No. 2014M552434), and Natural Science Foundation of China (51301131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xing, J., Li, Y. et al. Mechanical properties and anisotropy of thermal conductivity of Fe3−xCrxO4 (x = 0–3). Journal of Materials Research 31, 3805–3813 (2016). https://doi.org/10.1557/jmr.2016.425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.425

Navigation