Skip to main content
Log in

Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Experimental studies have shown capacity loss and impedance rise on the surfaces of cathode particles during (dis)charging in lithium-ion batteries. However, there are surprisingly few studies focusing on the cathode–electrolyte interface. The current study uses multiphysics finite element models to understand fluid–structure interactions in a half-cell battery system. Effects of C-rate, particle sizes, lithiation, and phase transformation of the cathode at the interface are investigated. Results demonstrate that doubling the particle size results in larger available lithium intercalation areas, giving rise to increased tension 1.40 times and compression 1.82 times at the interface. Moreover, higher C-rate with high lithium-ion concentration gradient results in higher mechanical stresses at the interface. These coupling factors are strongly related to the experimentally observed battery degradation. Our simulations demonstrate that both electrode and electrolyte have pronounced effects when investigating mechanical stresses at the electrode–electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. Y-M. Chiang: Building a better battery. Science 330, 1485 (2010).

    Article  CAS  Google Scholar 

  2. B. Kang and G. Ceder: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).

    Article  CAS  Google Scholar 

  3. D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, and D. Kovacheva: Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. In IBA—HBC 2006 Selected Papers from the International Battery Association & Hawaii Battery Conference 2006, Vol. 165, Waikoloa, Hawaii, USA, 2007; p. 491.

  4. D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, and H.J. Kim: Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim. Acta 50, 247 (2004).

    Article  CAS  Google Scholar 

  5. H. Ju, J. Wu, and Y.H. Xu: Revisiting the electrochemical impedance behaviour of the LiFePO4/C cathode. J. Chem. Sci. 125, 687 (2013).

    Article  CAS  Google Scholar 

  6. F.C. Strobridge, B. Orvananos, M. Croft, H.C. Yu, R. Robert, H. Liu, Z. Zhong, T. Connolley, M. Drakopoulos, K. Thornton, and C.P. Grey: Mapping the inhomogeneous electrochemical reaction through porous LiFePO4-electrodes in a standard coin cell battery. Chem. Mater. 27, 2374 (2015).

    Article  CAS  Google Scholar 

  7. R. Deshpande, Y.T. Cheng, M.W. Verbrugge, and A. Timmons: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158, A718 (2011).

    Article  CAS  Google Scholar 

  8. C.K. ChiuHuang and H.Y.S. Huang: Stress evolution on the phase boundary in LiFePO4 particles. J. Electrochem. Soc. 160, A2184 (2013).

    Article  CAS  Google Scholar 

  9. M. Stamps, J.W. Eischen, and H.-Y.S. Huang: Particle- and Crack-Size Dependency of Lithium-ion Battery Materials LiFePO4. AIMS Mater. Sci. 3 (1), 190 (2016).

    Article  CAS  Google Scholar 

  10. H.-Y.S. Huang and Y.-X. Wang: Dislocation Based Stress Developments in Lithium-Ion Batteries. J. Electrochem. Soc. 159 (6), A815 (2012).

    Article  CAS  Google Scholar 

  11. Y-T. Cheng and M.W. Verbrugge: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508 (2010).

    Article  CAS  Google Scholar 

  12. Y.T. Cheng and M.W. Verbrugge: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104, 083521 (2008).

    Article  CAS  Google Scholar 

  13. Y.T. Cheng and M.W. Verbrugge: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453 (2009).

    Article  CAS  Google Scholar 

  14. R. Deshpande, Y.T. Cheng, and M.W. Verbrugge: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081 (2010).

    Article  CAS  Google Scholar 

  15. R. Deshpande, Y. Qi, and Y.T. Cheng: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157, A967 (2010).

    Article  CAS  Google Scholar 

  16. R. Deshpande, M. Verbrugge, Y.T. Cheng, J. Wang, and P. Liu: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730 (2012).

    Article  CAS  Google Scholar 

  17. J. Park, W. Lu, and A.M. Sastry: Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 158, A201 (2011).

    Article  CAS  Google Scholar 

  18. M. Park, X. Zhang, M. Chung, G.B. Less, and A.M. Sastry: A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904 (2010).

    Article  CAS  Google Scholar 

  19. X. Zhang, A.M. Sastry, and W. Shyy: Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155, A542 (2008).

    Article  CAS  Google Scholar 

  20. X. Zhang, W. Shyy, and A.M. Sastry: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007).

    Article  CAS  Google Scholar 

  21. Z. Zhang: High Voltage Electrolyte for Lithium Batteries (Argonne National Laboratory Presentation, Washington, DC, 2012).

    Google Scholar 

  22. J. Christensen and J. Newman: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019 (2006).

    Article  CAS  Google Scholar 

  23. J. Christensen and J. Newman: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293 (2006).

    Article  CAS  Google Scholar 

  24. M. Zhu, J. Park, and A.M. Sastry: Fracture analysis of the cathode in Li-ion batteries: A simulation study. J. Electrochem. Soc. 159, A492 (2012).

    Article  CAS  Google Scholar 

  25. S. Renganathan, G. Sikha, S. Santhanagopalan, and R.E. White: Theoretical analysis of stresses in a lithium ion cell. J. Electrochem. Soc. 157, A155 (2010).

    Article  CAS  Google Scholar 

  26. S. Renganathan and R.E. White: Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient. J. Power Sources 196, 442 (2011).

    Article  CAS  Google Scholar 

  27. G. Chen, X. Song, and T.J. Richardson: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295 (2006).

    Article  CAS  Google Scholar 

  28. S-i. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada: Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707 (2008).

    Article  CAS  Google Scholar 

  29. A. Yamada, H. Koizumi, S-i. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, and Y. Kobayashi: Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 360 (2006).

    Article  CAS  Google Scholar 

  30. A. Yamada, H. Koizumi, N. Sonoyama, and R. Kanno: Phase change in LixFePO4. Electrochem. Solid-State Lett. 8, A409 (2005).

    Article  CAS  Google Scholar 

  31. C-K. ChiuHuang and H-Y.S. Huang: A diffusion model in a two-phase interfacial zone for nanoscale lithium-ion battery materials. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition (ASME International, Houston, 2012); p. 1231.

    Google Scholar 

  32. C-K. ChiuHuang, C. Zhou, and H-Y. Shadow Huang: In situ imaging of lithium-ion batteries via the secondary ion mass spectrometry. J. Nanotechnol. Eng. Med. 5, 021002 (2014).

    Article  CAS  Google Scholar 

  33. V. Srinivasan and J. Newman: Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151, A1517 (2004).

    Article  CAS  Google Scholar 

  34. C.K. ChiuHuang and H-Y.S. Huang: Critical lithiation for C-rate dependent mechanical stresses in LiFePO4. J. Solid State Electrochem. 19, 2245 (2015).

    Article  CAS  Google Scholar 

  35. F. Sauvage, E. Baudrin, M. Morcrette, and J.M. Tarascon: Pulsed laser deposition and electrochemical properties of LiFePO4 thin films. Electrochem. Solid-State Lett. 7, A15 (2004).

    Article  CAS  Google Scholar 

  36. G. Brunetti, D. Robert, P. Bayle-Guillemaud, J.L. Rouviere, E.F. Rauch, J.F. Martin, J.F. Colin, F. Bertin, and C. Cayron: Confirmation of the Domino-Cascade model by LiFePO4/FePO4 precession electron diffraction. Chem. Mater. 23, 4515 (2011).

    Article  CAS  Google Scholar 

  37. J. Christensen: Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 157, A366 (2010).

    Article  CAS  Google Scholar 

  38. Y.Y. Li, F. El Gabaly, T.R. Ferguson, R.B. Smith, N.C. Bartelt, J.D. Sugar, K.R. Fenton, D.A. Cogswell, A.L.D. Kilcoyne, T. Tyliszczak, M.Z. Bazant, and W.C. Chueh: Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149 (2014).

    Article  CAS  Google Scholar 

  39. L.O. Valoen and J.N. Reimers: Transport properties of LiPF6-based Li-ion battery electrolytes. J. Electrochem. Soc. 152, A882 (2005).

    Article  CAS  Google Scholar 

  40. G.A. Nazri and G. Pistoia, eds.: Lithium Batteries: Science and Technologies (Springer, New York, 2009); pp. 509–529.

    Google Scholar 

  41. S.C. Nagpure, R.G. Downing, B. Bhushan, S.S. Babu, and L. Cao: Neutron depth profiling technique for studying aging in Li-ion batteries. Electrochim. Acta 56, 4735 (2011).

    Article  CAS  Google Scholar 

  42. K. Hayamizu: Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate plus diethyl carbonate binary solutions of LiPF6 studied by NMR. J. Chem. Eng. Data 57, 2012 (2012).

    Article  CAS  Google Scholar 

  43. A.V. Churikov, A.V. Ivanishchev, I.A. Ivanishcheva, V.O. Sycheva, N.R. Khasanova, and E.V. Antipov: Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta 55, 2939 (2010).

    Article  CAS  Google Scholar 

  44. Q. Liu, H. He, Z.F. Li, Y.D. Liu, Y. Ren, W.Q. Lu, J. Lu, E.A. Stach, and J. Xie: Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells. ACS Appl. Mater. Interfaces 6, 3282 (2014).

    Article  CAS  Google Scholar 

  45. T. Maxisch and G. Ceder: Elastic properties of olivine LixFePO4 from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 174112 (2006).

    Article  CAS  Google Scholar 

  46. M. Tang, J.F. Belak, and M.R. Dorr: Anisotropic phase boundary morphology in nanoscale olivine electrode particles. J. Phys. Chem. C 115, 4922 (2011).

    Article  CAS  Google Scholar 

  47. L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, and J.M. Tarascon: Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520 (2006).

    Article  CAS  Google Scholar 

  48. A. Guduru, P.W.C. Northrop, S. Jain, A.C. Crothers, T.R. Marchant, and V.R. Subramanian: Analytical solution for electrolyte concentration distribution in lithium-ion batteries. J. Appl. Electrochem. 42, 189 (2012).

    Article  CAS  Google Scholar 

  49. Y.G. Wang, Y.R. Wang, E.J. Hosono, K.X. Wang, and H.S. Zhou: The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem., Int. Ed. 47, 7461 (2008).

    Article  CAS  Google Scholar 

  50. X.D. Zhang, Y.K. Hou, W. He, G.H. Yang, J.J. Cui, S.K. Liu, X. Song, and Z. Huang: Fabricating high performance lithium-ion batteries using bionanotechnology. Nanoscale 7, 3356 (2015).

    Article  CAS  Google Scholar 

  51. J.C. Li, Q.L. Zhang, X.C. Xiao, Y.T. Cheng, C.D. Liang, and N.J. Dudney: Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries. J. Am. Chem. Soc. 137, 13732 (2015).

    Article  CAS  Google Scholar 

  52. C. Lim, B. Yan, L.L. Yin, and L.K. Zhu: Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim. Acta 75, 279 (2012).

    Article  CAS  Google Scholar 

  53. G. Kobayashi, S.I. Nishimura, M.S. Park, R. Kanno, M. Yashima, T. Ida, and A. Yamada: Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv. Funct. Mater. 19, 395 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Ying Shadow Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Huang, HY.S. Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries. Journal of Materials Research 31, 3506–3512 (2016). https://doi.org/10.1557/jmr.2016.373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.373

Navigation