Skip to main content
Log in

Ab initio investigation of the substitution effects of 2 p elements on the electronic structure of γ-Fe4X (X = B, C, N, and O) in the ground state

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ground state properties of γ-Fe4X (X = B, C, N, and O) were studied by means of the density functional theory. The calculations were performed using the linearized augmented plane wave method as implemented in the Wien2k code. From the equilibrium cohesive energy point of view, all the compounds are ferromagnetic and the stability increases in the following sequence: γ-Fe4O, γ-Fe4N, γ-Fe4B, γ-Fe4C. The electron density suggests that the chemical bonding in γ-Fe4X (X = B, C, N, and O) is a mixture of covalent and ionic character that vary in intensity with the X atom. The magnetic moments and hyperfine interactions are clearly and differently affected by the nature of the X atom. The results indicated that there is not a linear relation between the 2 p electron number of the X atom and the magnetic properties of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. K.H. Jack: The iron-nitrogen system: The preparation and the crystal structures of nitrogen-austenite (Γ) and nitrogen-martensite (α´). Proc. R. Soc. London, Ser. A 208, 216–224 (1951).

    Article  CAS  Google Scholar 

  2. T.K. Kim and M. Takahashi: New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 20, 492–494 (1972).

    Article  CAS  Google Scholar 

  3. J.M.D. Coey and P.A.I. Smith: Magnetic nitrides. J. Magn. Magn. Mater. 200, 405–424 (1999).

    Article  CAS  Google Scholar 

  4. L. Rissanen, M. Neubauer, K.P. Lieb, and P. Schaaf: The new cubic iron-nitride phase FeN prepared by reactive magnetron sputtering. J. Alloys Compd. 274, 74–82 (1998).

    Article  CAS  Google Scholar 

  5. K.H. Jack: The iron-nitrogen system: The crystal structure of ε-phase iron nitrides. Acta Cryst. 5, 404–411 (1952).

    Article  Google Scholar 

  6. G.W. Wiener and J.A. Berger: Structure and magnetic properties of some transition metalnitrides. J. Met. 7, 360–365 (1955).

    CAS  Google Scholar 

  7. B.C. Frazer: Magnetic structure of Fe4N. Phys. Rev. 112, 751–754 (1958).

    Article  CAS  Google Scholar 

  8. G. Shirane, W.J. Takei, and S.L. Ruby: Mössbauer study of hyperfine fields and isomer shifts in Fe4N. Phys. Rev. 126, 49–52 (1962).

    Article  CAS  Google Scholar 

  9. S. Suzuki, H. Sakumoto, J. Minegishi, and Y. Omote: Coercivity and unit particle size of metal pigment. IEEE Trans. Magn. 17, 3017–3019 (1981).

    Article  Google Scholar 

  10. K. Tagawa, E. Kita, and A. Tasaki: Synthesis of fine Fe4N powder and its magnetic characteristics. Jpn. J. Appl. Phys. 21, 1596–1598 (1982).

    Article  CAS  Google Scholar 

  11. S. Matar, P. Mohn, G. Demazeau, and B. Siberchicot: The calculated electronic and magnetic structures of Fe4N and Mn4N. J. Phys. 49, 1761–1768 (1988).

    Article  CAS  Google Scholar 

  12. A. Sakuma: Self-consistent calculations for the electronic structure of iron nitrides Fe3N, Fe4N and Fe16N2. J. Magn. Magn. Mater. 102, 127–134 (1991).

    Article  CAS  Google Scholar 

  13. C.A. Kuhnen, R.S. de Figueredo, V. Drago, and E.Z. da Silva: Mössbauer studies and electronic structure of γ´-Fe4N. J. Magn. Magn. Mater. 111, 95–104 (1992).

    Article  CAS  Google Scholar 

  14. R. Coehoorn, G.H.O. Daalderop, and H.J.F. Jansen: Full-potential calculations of the magnetization of Fe16N2 and Fe4N. Phys. Rev. B 48, 3830–3834 (1993).

    Article  CAS  Google Scholar 

  15. S. Ishida and K. Kitawatase: Electronic structure and magnetic properties of iron nitrides. J. Magn. Magn. Mater. 104–107, 1933–1934 (1992).

    Article  Google Scholar 

  16. C. Paduani and J.C. Krause: Local magnetic properties and electronic structure of γ´-Fe4N. J. Magn. Magn. Mater. 138, 109–114 (1994).

    Article  CAS  Google Scholar 

  17. J.G.M. Armitage, R.G. Graham, J.S. Lord, P.C. Riedi, S.F. Matar, and G. Demazeau: Pressure dependence of magnetic properties of Fe4N and Mn4N. J. Magn. Magn. Mater. 104–107, 1935–1936 (1992).

    Article  Google Scholar 

  18. Y. Kong, R. Zhou, and L. Fashen: A linear muffin-tin orbital calculation of the volume dependence of local electronic and magnetic properties of γ′-Fe4N. J. Phys.: Condens. Matter 8, 3829–3834 (1996).

    CAS  Google Scholar 

  19. M. Sifkovits, H. Smolinski, S. Hellwig, and W. Weber: Interplay of chemical bonding and magnetism in Fe4N, Fe3N and ζ-Fe2N. J. Magn. Magn. Mater. 204, 191–198 (1999).

    Article  CAS  Google Scholar 

  20. Y. Kong, R. Zhou, and F. Li: Spin-polarized linear muffin-tin orbitals calculation of the interstitial-atom effect in gamma-Fe4Z (Z= H, C, N). Phys. Rev. B 54, 5460 (1996).

    Article  CAS  Google Scholar 

  21. A.V. dos Santos, M.I. da Costa, and C.A. Kuhnen: Electronic structure and magnetic properties of Fe4C. J. Magn. Magn. Mater. 166, 223–230 (1997).

    Article  Google Scholar 

  22. J.C. Krause, C. Paduani, and M.I. da Costa: Cluster calculations of the electronic structure of Fe4C. Hyperfine Interact. 108, 465–475 (1997).

    Article  CAS  Google Scholar 

  23. N. Ishimatsu, H. Maruyama, N. Kawamura, M. Suzuki, Y. Ohishi, M. Ito, S. Nasu, T. Kawakami, and O. Shimomura: Pressure-induced magnetic transition in Fe4N probed by Fe K-edge XMCD measurement. J. Phys. Soc. Jpn. 72, 2372–2376 (2003).

    Article  CAS  Google Scholar 

  24. M. Ogura and H. Akai: Magnetic properties and electric field gradients of Fe4N and Fe4C. Hyperfine Interact. 158, 19–23 (2004).

    Article  CAS  Google Scholar 

  25. R.S. de Figueiredo and J. Foct: Mössbauer study of superstructures induced by mechanical alloying in nanocrystalline (MexFe1-x)4N nitrides. In Proceedings of ICAME-95, Vol. 50 (Italian Physical Society: Rimini, Italy, 1996); p. 509.

    Google Scholar 

  26. R.S. de Figueiredo, C.A. Kuhnen, and A.V. dos Santos: Crystallographic, magnetic and electronic struture of iron-silver and iron-gold perovskite nitrides. J. Magn. Magn. Mater. 173, 141–154 (1997).

    Article  Google Scholar 

  27. C.A. Kuhnen, R.S. de Figueiredo, and A.V. dos Santos: Mössbauer spectroscopy, crystallographic, magnetic and electronic structure of ZnFe3N and InFe3N. J. Magn. Magn. Mater. 219, 58–68 (2000).

    Article  CAS  Google Scholar 

  28. R.S. de Figueiredo, J. Foct, A.V. dos Santos, and C.A. Kuhnen: Crystallographic and electronic structure of CuxFe4−xN. J. Alloys Compd. 315, 42–50 (2001).

    Article  Google Scholar 

  29. J. Foct, R.S. de Figueiredo, O. Richard, and J.P. Mormiroli: Mechanical Alloying of Interstitial Solid Solutions and Compounds. Mater. Sci. Forum 225–227, 409–416 (1996).

    Article  Google Scholar 

  30. A.V. dos Santos and C.A. Kuhnen: Electronic structure and magnetic properties of CoFe3N, CrFe3N and TiFe3N. J. Alloys Compd. 321, 60–66 (2001).

    Article  Google Scholar 

  31. S. Matar, P. Mohn, and J. Kübler: Magnetovolume effects in PtFe3N. J. Magn. Magn. Mater. 104–107, 1927–1928 (1992).

    Article  Google Scholar 

  32. X.G. Ma, J.J. Jiang, P. Liang, J. Wang, Q. Ma, and Q.K. Zhang: Structural stability and magnetismo of γ′-Fe4N and CoFe3N compounds. J. Alloys Compd. 480, 475–480 (2009).

    Article  CAS  Google Scholar 

  33. A.V. Gil Rebaza, J. Desimoni, and E.L. Peltzer y Blancá: Study on the oscillatory behaviour of the lattice parameter in ternary iron–nitrogen compounds. Phys. B 407, 3240–3243 (2012).

    Article  CAS  Google Scholar 

  34. K. Hocine, M. Rabah, D. Rached, S. Djili, and H. Baltache: Ab initio study of electronic structure and magnetic properties of MFe3N (M = Ru and Os). Comput. Mater. Sci. 65, 6–12 (2012).

    Article  CAS  Google Scholar 

  35. Y. Zhang, Z. Wang, and J. Cao: Predicting magnetostriction of MFe3N (M = Fe, Mn, Ir, Os, Pd, Rh) from ab initio calculations. Comput. Mater. Sci. 92, 464–467 (2014).

    Article  CAS  Google Scholar 

  36. D. Music and J.M. Schneider: Elastic properties of MFe3N (M = Ni, Pd, Pt) studied by ab initio calculations. Appl. Phys. Lett. 88, 031914 (2006).

    Article  CAS  Google Scholar 

  37. E. Zhao, H. Xiang, J. Meng, and Z. Wu: First-principles investigation on the elastic, magnetic and electronic properties of MFe3N (M = Fe, Ru, Os). Chem. Phys. Lett. 449, 96–100 (2007).

    Article  CAS  Google Scholar 

  38. M.F. Yan, Y.Q. Wu, and R.L. Liu: Plasticity and initio characterizations on Fe4N produced on the surface of nanocrystallized 18Ni-maraging steel plasma nitrided at lower temperature. Appl. Surf. Sci. 255, 8902–8906 (2009).

    Article  CAS  Google Scholar 

  39. A.N. Timoshevskii and S.O. Yablonovskii: Ab-initio modeling of the short range order in Fe-N and Fe-C autenitic alloys. Funct. Mater. 18, 517–522 (2011).

    CAS  Google Scholar 

  40. Z.Q. Lv, Y. Gao, S.H. Sun, M.G. Qv, Z.H. Wang, Z.P. Shi, and W.T. Fu: Electronic, magnetic and elastic properties of γ-Fe4X (X = B/C/N) from density functional theory calculations. J. Magn. Magn. Mater. 333, 39–45 (2013).

    Article  CAS  Google Scholar 

  41. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. B 77, 3865–3868 (1996).

    CAS  Google Scholar 

  42. J.A. White and D.M. Bird: Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Phys. Rev. B 50, 4954–4957 (1994).

    Article  CAS  Google Scholar 

  43. P. Blaha, K. Schwarz, and J. Luitz: Computer code WIEN97, Universitat Wien, Austria, 1997.

  44. E.L. Peltzer y Blanca, J. Desimoni, and N.E. Christensen: Electronic structure of FCC-FenX (X=C, N; n=4, 8) alloys. Phys. B 354, 341–344 (2004).

    Article  CAS  Google Scholar 

  45. W.K. Choo and R. Kaplow: Mössbauer measurements on the aging of iron-carbon martensite. Acta Metall. 21, 725–732 (1973).

    Article  CAS  Google Scholar 

  46. N. De Cristofaro and R. Kaplow: Interstitial atom configurations in stable and metastable Fe-N and Fe-C solid solutions. Metall. Trans. A 8, 35–44 (1977).

    Article  Google Scholar 

  47. R.E. Watson and A.J. Freeman: Origin of effective fields in magnetic materials. Phys. Rev. 123, 2027–2047 (1961).

    Article  Google Scholar 

  48. A.N. Timoshevskii, V.A. Timoshevskii, and B.Z. Yanchitsky: The influence of carbon and nitrogen on the electronic structure and hyperfine interactions in face-centred-cubic iron-based alloys. J. Phys.: Condens. Matter 13, 1051–1061 (2001).

    CAS  Google Scholar 

  49. J. Haglund, A. Fernández Guillermet, G. Grimvall, and M. Korling: Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48, 11685–11691 (1993).

    Article  CAS  Google Scholar 

  50. K.J. Duff: Calibration of the isomer shift for 57Fe. Phys. Rev. B 9, 66–72 (1974).

    Article  CAS  Google Scholar 

  51. C.L Yang, M.M Abd-Elmeguid, H. Micklitz, G. Michels, J.W Otto, Y. Kong, D.S. Xue, and F.S. Li: Pressure effects on the electronic properties and the magnetic ground state of γ′-Fe4N. J. Magn. Magn. Mater. 151, L19–L23 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Vanderlei dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, A.V., Samudio Pérez, C.A. Ab initio investigation of the substitution effects of 2 p elements on the electronic structure of γ-Fe4X (X = B, C, N, and O) in the ground state. Journal of Materials Research 31, 202–212 (2016). https://doi.org/10.1557/jmr.2015.394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.394

Navigation