Skip to main content
Log in

Co-mediated nucleation of erbium/silicon nanoclusters in fused silica

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigate the structural evolution of Er/Si nanoclusters obtained in co-implanted fused silica upon annealing via Raman spectroscopy and transmission electron microscopy. The effect of annealing temperature (900–1200 °C) on the nature and the relative fraction of the formed amorphous-Si, Si nanocrystals (Si-nc), and amorphous Er nanoparticles (Er-np) was determined in this ternary Er–Si–O system, showing a change of growth regime above 1100 °C due to the formation of mixed Er/O/Si aggregates. We observe that the nucleation and growth of amorphous Er-np and Si-nc are mutually affected. The 2-fold increase in the size of Er-np when no excess Si+ is present in the matrix indicates that the formation of Si-nc in the proximity of Er clusters hinders Er diffusivity above 1100 °C. This finding shows the importance of nanoclustering for improving the thermal stability of Er-doped silica systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A. Kanjilal, L. Rebohle, M. Voelskow, W. Skorupa, and M. Helm: Influence of annealing on the Er luminescence in Si-rich SiO2 layers coimplanted with Er ions. J. Appl. Phys. 104, 103522 (2008).

    Article  Google Scholar 

  2. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro: Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification. Phys. Rev. B 67, 2453011 (2003).

    Article  Google Scholar 

  3. G. Franzò, V. Vinciguerra, and F. Priolo: Excitation mechanism of rare-earth ions in silicon nanocrystals. Appl. Phys. A 69, 3 (1999).

    Google Scholar 

  4. P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J.R. Morante: Site of Er ions in silica layers codoped with Si nanoclusters and Er. Appl. Phys. Lett. 88, 121915 (2006).

    Article  Google Scholar 

  5. G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno: Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2. Appl. Phys. Lett. 82, 3871 (2003).

    Article  Google Scholar 

  6. E. Talbot, R. Lardé, P. Pareige, L. Khomenkova, K. Hijazi, and F. Gourbilleau: Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica. Nanoscale Res. Lett. 8(1), 1–8 (2013).

    Article  Google Scholar 

  7. F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera: Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals. J. Appl. Phys. 89, 264 (2001).

    Article  CAS  Google Scholar 

  8. X.D. Pi, O.H.Y. Zalloum, J. Wojcik, A.P. Knights, P. Mascher, A.D.W. Todd, and P.J. Simpson: Formation and oxidation of Si nanoclusters in Er-doped Si-rich SiOx. J. Appl. Phys. 97, 096108 (2005).

    Article  Google Scholar 

  9. A. Polman, D.C. Jacobson, A. Lidgard, J.M. Poate, and G.W. Arnold: Photoluminescence and structural characterization of MeV erbium-implanted silica glass. Nucl. Instrum. Methods Phys. Res., Sect. B 59–60, 1313 (1991).

    Article  Google Scholar 

  10. J. Thomas, M. Myara, L. Troussellier, E. Burov, A. Pastouret, D. Boivin, G. Melin, O. Gilard, M. Sotom, and P. Signoret: Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications. Opt. Express 20, 2435 (2012).

    Article  CAS  Google Scholar 

  11. A. Gusarov, M. Van Uffelen, M. Hotoleanu, H. Thienpont, and F. Berghmans: Radiation sensitivity of EDFAs based on highly Er-doped fibers. J. Lightwave Technol. 27, 1540 (2009).

    Article  CAS  Google Scholar 

  12. I.F. Crowe, R.J. Kashtiban, B. Sherliker, U. Bangert, M.P. Halsall, A.P. Knights, and R.M. Gwilliam: Spatially correlated erbium and Si nanocrystals in coimplanted SiO2 after a single high temperature anneal. J. Appl. Phys. 107, 044316 (2010).

    Article  Google Scholar 

  13. M. Zhang, R. Cai, Y. Zhang, C. Wang, Y. Wang, G.G. Ross, and D. Barba: Evolution of microstructural defects with strain effects in germanium nanocrystals synthesized at different annealing temperatures. Mater. Charact. 93, 1 (2014).

    Article  CAS  Google Scholar 

  14. G. Faraci, S. Gibilisco, P. Russo, A.R. Pennisi, and S. La Rosa: Modified Raman confinement model for Si nanocrystals. Phys. Rev. B 73, 033307 (2006).

    Article  Google Scholar 

  15. D. Barba, J. Demarche, F. Martin, G. Terwagne, and G.G. Ross: Control of the Ge nanocrystal synthesis by co-implantation of Si+. J. Appl. Phys. 114, 074306 (2013).

    Article  Google Scholar 

  16. S. Laachira, M. Moussetadb, R. Adhirib, and A. Fahlia: Crystal-Field Energy Levels of Trivalent Erbium Ion in Cubic Symmetry. Z. Naturforsch. 66a, 457 (2011).

    Article  Google Scholar 

  17. A. Merlen, A. Sangar, P. Torchio, L.N.D. Kallepalli, D. Grojo, O. Uteza, and P. Delaporte: Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation. Appl. Surf. Sci. 284, 545 (2013).

    Article  CAS  Google Scholar 

  18. D. Mustafa, D. Biggemann, J.A. Martens, C.E.A. Kirschhock, L.R. Tessler, and E. Breynaert: Erbium enhanced formation and growth of photoluminescent Er/Si nanocrystals. Thin Solid Films 536, 196 (2013).

    Article  CAS  Google Scholar 

  19. J.S. John, J.L. Coffer, Y. Chen, and R.F. Pinizzotto: Size control of erbium-doped silicon nanocrystals. Appl. Phys. Lett. 77, 1635 (2000).

    Article  Google Scholar 

  20. Y.Q. Wang, R. Smirani, and G.G. Ross: The effect of implantation dose on the microstructure of silicon nanocrystals in SiO2. Nanotechnology 15, 1554 (2004).

    Article  CAS  Google Scholar 

  21. Y-G.F. Ren: Er doped silicon as an optoelectronic semiconductor material. Ph.D. Thesis, Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1994.

    Google Scholar 

  22. F. Gourbilleau, M. Levalois, C. Dufour, J. Vicens, and R. Rizk: Optimized conditions for an enhanced coupling rate between Er ions and Si nanoclusters for an improved 1.54-μm emission. J. Appl. Phys. 95, 3717 (2004).

    Article  CAS  Google Scholar 

  23. C.S. Zhang, J.Z. Sun, and F. Zhang: Structure and composition evolutions of Er-doped Si-rich SiO2 film under annealing. Microelectron. Eng. 81, 378 (2005).

    Article  CAS  Google Scholar 

  24. D. Yan, P. Wu, S.P. Zhang, L. Liang, F. Yang, Y.L. Pei, and S. Chen: Assignments of the Raman modes of monoclinic erbium oxide. J. Appl. Phys. 114, 193502 (2013).

    Article  Google Scholar 

  25. H. Isshiki, M.J.A. De Dood, A. Polman, and T. Kimura: Self-assembled infrared-luminescent Er–Si–O crystallites on silicon. Appl. Phys. Lett. 85, 4343 (2004).

    Article  CAS  Google Scholar 

  26. A. Polman: Erbium implanted thin film photonic materials. J. Appl. Phys. 82, 1 (1997).

    Article  CAS  Google Scholar 

  27. D. Kollewe, T. Bachmann, and W. Sigle: Redistribution of implanted Er in SiO2 on Si studied by combined transmission electron microscopy and Rutherford backscattering analysis. Phys. Lett. A 253, 305 (1999).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partly supported by the NSERC Strategic Grant STPGP 447377-13 in partnership with MPB Technologies Inc. F.R. acknowledges NSERC for a EWR Steacie Memorial Fellowship. F.R. and A.R. are supported by individual Discovery Grants (NSERC). F.R. acknowledges the Alexander von Humboldt Foundation for a FW Bessel Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mert Celikin or Federico Rosei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celikin, M., Barba, D., Ruediger, A. et al. Co-mediated nucleation of erbium/silicon nanoclusters in fused silica. Journal of Materials Research 30, 3003–3010 (2015). https://doi.org/10.1557/jmr.2015.277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.277

Navigation