Skip to main content
Log in

Linear and nonlinear optical properties of aluminum borate crystal Al5BO9: Experiment and calculation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A noncentrosymmetric aluminum borate crystal, Al5BO9, was obtained via high-temperature solution method. Considering the structure diversities of Al5BO9, the single crystal structure was cautiously redetermined before the investigation. The fundamental building blocks of the structure are BO3 triangles, AlO4 tetrahedra, and AlO6 octahedra. Since Al5BO9 only consists of strong covalent B–O and Al–O bonds, it is worth investigating the structure–optical property relationship thoroughly, especially the linear and nonlinear optical properties. To gain further insight into the origin of the nonlinear optical response of Al5BO9, the electronic structure calculations, second harmonic generation (SHG)-weighted electron density, and dipole moment of polyhedra were analyzed in detail. All evidences deduced from calculated results indicate that the SHG contribution from the Al–O polyhedra is more pronounced than that of the BO3 group in Al5BO9, which is anticipated to open a window for the search and design of new inorganic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. P. Becker: Borate materials in nonlinear optics. Adv. Mater. 10, 979 (1998).

    CAS  Google Scholar 

  2. C.T. Chen, N. Ye, J. Lin, J. Jiang, W.R. Zeng, and B.C. Wu: Computer-assisted search for nonlinear optical crystals. Adv. Mater. 11, 1071 (1999).

    CAS  Google Scholar 

  3. T. Sasaki, Y. Mori, M. Yoshimura, Y.K. Yap, and T. Kamimura: Recent development of nonlinear optical borate crystals: Key materials for generation of visible and UV light. Mater. Sci. Eng., R 30, 1 (2000).

    Google Scholar 

  4. T. Katsumata, T. Yoshimura, K. Kanazawa, and H. Aizawa: Growth of lithium borate crystals from the vitreous state. J. Mater. Res. 9, 8 (1994).

    Google Scholar 

  5. Y. Ding and Y. Miura: Stimulated surface crystallization of β- barium borate on glass due to ultrasonic treatment and second harmonic generation. J. Mater. Res. 11, 2 (1996).

    Google Scholar 

  6. C.T. Chen, B.C. Wu, A.D. Jiang, and G.M. You: A new-type ultraviolet SHG crystal-beta-BaB2O4. Sci. Sin., Ser. B 28, 235 (1985).

    Google Scholar 

  7. C.T. Chen, Y.C. Wu, A.D. Jiang, B.C. Wu, G.M. You, R.K. Li, and S.J. Lin: New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 6, 616 (1989).

    CAS  Google Scholar 

  8. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai: New nonlinear optical crystal: Cesium lithium borate. Appl. Phys. Lett. 67, 1818 (1995).

    CAS  Google Scholar 

  9. B.C. Wu, D.Y. Tang, N. Ye, and C.T. Chen: Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 5, 105 (1996).

    CAS  Google Scholar 

  10. H.W. Yu, H.P. Wu, S.L. Pan, Z.H. Yang, X.L. Hou, X. Su, Q. Jing, K.R. Poeppelmeier, and J.M. Rondinelli: Cs3Zn6B9O21: A chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. J. Am. Chem. Soc. 136, 1264 (2014).

    CAS  Google Scholar 

  11. H.H. Lin, H.B. Liang, Z.F. Tian, Q. Su, H.Y. Xie, and J.F. Ding: Vacuum-ultraviolet–vis luminescence of dibarium magnesium orthoborate Ba2Mg(BO3)2 doped with Ce3+ and Eu2+ ions. J. Mater. Res. 21, 4 (2006).

    Google Scholar 

  12. H. Emme, M. Valldor, R. Pöttgen, and H. Huppertz: Associating borate and silicate chemistry by extreme conditions: High-pressure synthesis, crystal structure, and properties of the new borates RE3B5O12 (RE = Er-Lu). Chem. Mater. 17, 2707 (2005).

    CAS  Google Scholar 

  13. C.H. Lu and S.V. Godbole: Synthesis and characterization of ultraviolet-emitting cerium-ion-doped SrBPO5 phosphors. J. Mater. Res. 19, 8 (2004).

    Google Scholar 

  14. H.P. Wu, H.W. Yu, Z.H. Yang, X.L. Hou, X. Su, S.L. Pan, K.R. Poeppelmeier, and J.M. Rondinelli: Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 135, 4215 (2013).

    CAS  Google Scholar 

  15. Y.C. Wu, T. Sasaki, S. Nakai, A.Y. okotani, H. Tang, and C.T. Chen: Structural, electronic and optical properties of novel carbonate fluorides ABCO3 F (A = K, Rb, Cs; B =Ca, Sr). Appl. Phys. Lett. 62, 2614 (1993).

    CAS  Google Scholar 

  16. M. Zhang, X. Su, S.L. Pan, Z. Wang, H. Zhang, Z.H. Yang, B.B. Zhang, L.Y. Dong, Y. Wang, F.F. Zhang, and Y. Yang: Linear and nonlinear optical properties of K3B6O10Br single crystal: Experiment and calculation. J. Phys. Chem. C 118, 11849 (2014).

    CAS  Google Scholar 

  17. Z.G. Hu, T. Higashiyama, M. Yoshimura, Y.K. Yap, Y. Mori, and T. Sasaki: A new nonlinear optical borate crystal K2Al2B2O7(KAB). Jpn. J. Appl. Phys. 37, L1093 (1998).

    CAS  Google Scholar 

  18. L.J. Liu, C.L. Liu, X.Y. Wang, Z.G. Hu, R.K. Li, and C.T. Chen: Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals. Solid State Sci. 11, 841 (2009).

    CAS  Google Scholar 

  19. Y. Zhou, Y.C. Yue, J.N. Wang, F. Yang, X.K. Cheng, D.F. Cui, Q.J. Peng, Z.G. Hu, and Z.Y. Xu: Nonlinear optical properties of BaAlBO3F2 Crystal. Opt. Express 17, 20033 (2009).

    CAS  Google Scholar 

  20. C.T. Chen, Z.S. Lin, and Z.Z. Wang: The development of new borate-based UV nonlinear optical crystals. Appl. Phys. B 80, 1 (2005).

    CAS  Google Scholar 

  21. J. Zhou, W.H. Fang, C. Rong, and G.Y. Yang: A series of open-framework aluminoborates templated by transition-metal complexes. Chem. Eur. J. 16, 4852 (2010).

    CAS  Google Scholar 

  22. Y.V. Sokolova, A.V. Azizov, M.A. Simonov, N.I. Leonyuk, and N.V. Belov: The crystal structure of the synthetic ortho-tri-borate Al5(BO3)O6. Dokl. Akad. Nauk SSSR 243, 655 (1978).

    CAS  Google Scholar 

  23. G.D. Gatta, P. Lotti, M. Merlini, H.P. Liermann, M. Fisch, N. Rotiroti, and T. Armbruster: High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material. J. Am. Ceram. Soc. 96, 2583 (2013).

    CAS  Google Scholar 

  24. Y. Shin, D.W. Lee, J. Hong, K. Kawk, and K.M. Ok: Second-harmonic generating properties of polar noncentrosymmetric aluminoborate solid solutions, Al5−xGaxBO9 (0.0 ≤ x ≤ 0.5). Dalton Trans. 41, 3233 (2012).

    CAS  Google Scholar 

  25. D. Mazza, M. Vallino, and G. Busca: Mullite-type structures in the system Al2O3-Me2O (Me = Na, K) and Al2O3-B2O3. J. Am. Ceram. Soc. 75, 1929 (1992).

    CAS  Google Scholar 

  26. G.M. Sheldrick: SHELXTL, Version 6.14; Bruker Analytical X-ray Instruments. Inc. Madison, WI. (2003).

    Google Scholar 

  27. A.L. Spek: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7 (2003).

    CAS  Google Scholar 

  28. P. Kubelka and F.Z. Munk: A contribution to the optics of pigments. Tech. Phys. 12, 593 (1931).

    Google Scholar 

  29. S.K. Kurtz and T.T. Perry: A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798 (1968).

    CAS  Google Scholar 

  30. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Rrfson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 568 (2005).

    Google Scholar 

  31. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).

    CAS  Google Scholar 

  32. S.N. Rashkeev, W.R.L. Lambrecht, and B. Segall: Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. Phys Rev. B. 57, 3905 (1998).

    CAS  Google Scholar 

  33. A.M. Rappe, K. Rabe, and M.E. Kaxiras: Optimized pseudopotentials. Phys. Rev. B. 41, 1227 (1990).

    CAS  Google Scholar 

  34. I.D. Brown and D. Altermatt: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 41, 244 (1985).

    Google Scholar 

  35. A. Vegas, F.H. Cano, and S. Garcis-Blance: Refinement of aluminium orthoborate. Acta Crystallogr., Sect. B: Struct. Sci. 33, 3607 (1977).

    Google Scholar 

  36. J. Ju, T. Yang, G.B. Li, F.H. Liao, Y.X. Wang, L.P. You, and J.H. Lin: PKU-5: An aluminoborate with novel octahedral framework topology. Chem. Eur. J. 10, 3901 (2004).

    CAS  Google Scholar 

  37. C. Cheng, C. Tang, X.X. Ding, X.T. Huang, Z.X. Huang, S.R. Qi, L. Hu, and Y.X. Li: Catalytic synthesis of aluminum borate nanowires. Chem. Phys. Lett. 373, 626 (2003).

    CAS  Google Scholar 

  38. J. Wang, J. Sha, Q. Yang, Y.W. Wang, and D.R. Yang: Synthesis of aluminium borate nanowires by sol–gel method. Mater. Res. Bull. 40, 1551 (2005).

    CAS  Google Scholar 

  39. H.J. Li, Z.J. Li, L.H. Qi, and H.B. Oy: Effect of extrusion on the thermal expansion behavior of Al18B4O33, whisker–Mg composites. Scr. Mater. 61, 512 (2009).

    CAS  Google Scholar 

  40. M. Fisch, T. Armbrustera, D. Rentsch, E. Libowitzky, and T. Pettke: Crystal-chemistry of mullite-type aluminoborates Al18B4O33 and Al5BO9: A stoichiometry puzzle. J. Solid State Chem. 184, 70 (2011).

    CAS  Google Scholar 

  41. M.H. Van der Mooren, T. Rasing, and H.J.A. Bluyssen: Determination of type I phase matching angles and conversion efficiency in KTP. Appl. Opt. 34, 934 (1995).

    Google Scholar 

  42. P. Debye: Polar Molecules. (The Chemical Catalog Company Inc., New York, 1929); p. 99.

    Google Scholar 

  43. P.S. Halasyamani: Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem. Mater. 16, 3586 (2004).

    CAS  Google Scholar 

  44. J.J. Zhang, Z.H. Zhang, W.G. Zhang, Q.X. Zheng, Y.X. Sun, C.Q. Zhang, and X.T. Tao: Polymorphism of BaTeMo2O9: A new polar polymorph and the phase transformation. Chem. Mater. 23, 3752 (2011).

    CAS  Google Scholar 

  45. P. Mori-Sanchez, A.J. Cohen, and W.T. Yang: Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100, 146401 (2008).

    Google Scholar 

  46. A.J. Cohen, P. Mori-Sanchez, and W.T. Yang: Fractional charge perspective on the band gap in density-functional theory. Phys. Rev. B. 77, 115123 (2008).

    Google Scholar 

  47. A.H. Reshak, I.V. Kityk, and S. Auluck: Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: Theory and experiment. J. Phys. Chem. B 114, 16705 (2010).

    CAS  Google Scholar 

  48. A.H. Reshak, X.A. Chen, S. Auluck, H. Kamarudin, J. Chyský, A. Wojciechowski, and I.V. Kityk: Linear and nonlinear optical susceptibilities and the hyperpolarizability of borate LiBaB9O15 single-crystal: Theory and experiment. J. Phys. Chem. B 117, 14141 (2013).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Special Fund for Xinjiang Key Laboratories (Grant No. 2014KL009), Graduate Research and Innovation Program in Xinjiang Uygur Autonomous Region of China (XJGRI2014151), Key Laboratory of Functional Materials and Devices for Special Environments of CAS (2013DP173196-2013-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhang, Shilie Pan or Huimin Chen.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D., Zhang, M., Li, D. et al. Linear and nonlinear optical properties of aluminum borate crystal Al5BO9: Experiment and calculation. Journal of Materials Research 30, 2319–2326 (2015). https://doi.org/10.1557/jmr.2015.204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.204

Navigation