Skip to main content
Log in

Quantitative compositional analysis of InxGa1−xN/GaN multiquantum wells in light-emitting diodes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A quantitative analysis of In concentration in InGaN/GaN multiquantum wells in light-emitting diodes was carried out using high-resolution transmission electron microscopy (HRTEM) and high-angle annual dark-field scanning TEM (HAADF-STEM). The In composition in InGaN was evaluated by the precise measurement of c-lattice parameters in the HRTEM micrographs, which increase with increasing In composition. The reliability of the results was confirmed by high-resolution x-ray diffraction measurements and Rutherford backscattering spectrometry. Quantitative In compositions can, therefore, be determined using HRTEM. We tried to determine the quantitative In compositions in InGaN by analyzing the intensity profiles of the HAADF-STEM images. However, several problems were encountered, such as differences in the thickness of the region observed, carbon contamination, and ion beam damage during specimen preparation. Therefore, relative differences in composition were observed in the HAADF-STEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushida, Y. Suhimoto, and H. Kiyoku: Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 233 K. Appl. Phys. Lett. 69, 3034–3036 (1996).

    Article  CAS  Google Scholar 

  2. H. Morkoç, G.S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns: Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363–1398 (1997).

    Article  Google Scholar 

  3. S.J. Pearton, B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, J. Lin, and S.N.G. Chu: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys.: Condens. Matter 16, R961–R994 (2004).

    CAS  Google Scholar 

  4. I.K. Shmagin, J.F. Muth, R.M. Kolbas, R.D. Dupuis, P.A. Grudowski, C.J. Eiting, J. Park, B.S. Shelton, and D.J.H. Lambert: Optical data storage in InGaN/GaN heterostructures. Appl. Phys. Lett. 71, 1382–1384 (1997).

    Article  CAS  Google Scholar 

  5. M.D. McCluskey, L.T. Romano, B.S. Krusor, and N.M. Johnson: Interdiffusion of In and Ga in InGaN/GaN quantum wells. Appl. Phys. Lett. 73, 1281–1283 (1998).

    Article  CAS  Google Scholar 

  6. T. Mukai, M. Yamada, and S. Nakamura: Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys. 38, 3976–3981 (1999).

    Article  CAS  Google Scholar 

  7. Y. Ko, J. Song, B. Leung, J. Han, and Y. Cho: Multi-color broadband visible light source via GaN hexagonal annular structure. Sci. Rep. 4, 5514 (2014).

    Article  CAS  Google Scholar 

  8. K.S. Ramaiah, Y.K. Su, S.J. Chang, B. Kerr, H.P. Liu, and I.G. Chen: Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 84, 3307–3309 (2004).

    Article  CAS  Google Scholar 

  9. S. Pereira, E. Pereira, E. Alves, N.P. Barradas, K.P. O’Donnell, C. Liu, C.J. Deatcher, and I.M. Watson: Depth profiling InGaN/GaN multiple quantum wells by Rutherford backscattering: The role of intermixing. Appl. Phys. Lett. 81, 2950–2952 (2002).

    Article  CAS  Google Scholar 

  10. L. Marona, P. Perlin, R. Czernecki, M. Leszczyński, M. Boćkowski, R. Jakiela, T. Suski, and S.P. Najda: Secondary ions mass spectroscopy measurements of dopant impurities in highly stressed InGaN laser diodes. Appl. Phys. Lett. 98, 241115 (2011).

    Article  Google Scholar 

  11. C.G. Van de Walle, M.D. McCluskey, C.P. Master, L.T. Romano, and N.M. Johnson: Large and composition-dependent band gap bowing in InxGa1−xN alloys. Mater. Sci. Eng., B 59, 274–278 (1999).

    Article  Google Scholar 

  12. C. Kisielowskia, C.J.D. Hetherington, Y.C. Wang, R. Kilaas, M.A. O’Keefe, and A. Thust: Imaging columns of the light elements carbon, nitrogen and oxygen with sub Angstrom resolution. Ultramicroscopy 89, 243 (2001).

    Article  Google Scholar 

  13. J. Li, C. Zhao, Y. Xing, S. Su, and B. Cheng: Full-field strain mapping at a Ge/Si heterostructure interface. Materials 6, 2130 (2013).

    Article  CAS  Google Scholar 

  14. P. Galindo, S. Kret, A.M. Sanchez, J. Laval, A. Yanez, J. Pizarro, E. Guerrero, T. Ben, and S.I. Molina: The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186–1193 (2007).

    Article  CAS  Google Scholar 

  15. S.J. Pennycook, S.D. Berger, and R.J. Culbertson: Elemental mapping with elastically scattered electrons. J. Microsc. 144, 229–249 (1986).

    Article  Google Scholar 

  16. T. Schulz, T. Remmele, T. Markurt, M. Korytov, and M. Albrecht: Analysis of statistical compositional alloy fluctuations in InGaN from aberration corrected transmission electron microscopy image series. J. Appl. Phys. 112, 033106 (2012).

    Article  Google Scholar 

  17. T. Walther, H. Amari, I.M. Ross, T. Wang, and A.G. Cullis: Lattice resolved annular dark-field scanning transmission electron microscopy of (Al, In)GaN/GaN layers for measuring segregation with sub-monolayer precision. J. Mater. Sci. 48, 2883–2892 (2013).

    Article  CAS  Google Scholar 

  18. S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, E. Alves, A.D. Sequeira, and N. Franco: Interpretation of double x-ray diffraction peaks from InGaN layers. Appl. Phys. Lett. 79, 1432 (2001).

    Article  CAS  Google Scholar 

  19. S. Srinivasan, R. Liu, F. Bertram, F.A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa: A comparison of rutherford backscattering spectroscopy and x-ray diffraction to determine the composition of thick InGaN epilayers. Phys. Status Solidi B 228, 41–44 (2001).

    Article  CAS  Google Scholar 

  20. J. Wagner, A. Ramakrishnan, D. Behr, M. Maier, N. Herres, M. Kunzer, H. Obloh, and K-H. Bachem: Composition dependence of the band gap energy of InxGal−xN layers on GaN (x≤0.15) grown by metal-organic chemical vapor deposition. MRS Internet J. Nitride Semicond. Res. 4S1, G2.8 (1999).

    Google Scholar 

  21. S. Pereira, M.R. Correia, T. Monteiro, E. Pereira, E. Alves, A.D. Sequeira, and N. Franco: Compositional dependence of the strain-free optical band gap in InxGa1−xN layers. Appl. Phys. Lett. 78, 2137 (2001).

    Article  CAS  Google Scholar 

  22. S. Pereira, M.R. Correia, T. Monteiro, E. Pereira, M.R. Soares, and E. Alves: Indium content determination related with structural and optical properties of InGaN layers. J. Cryst. Growth 230, 448–453 (2001).

    Article  CAS  Google Scholar 

  23. K.P. O’Donnell, J.F.W. Mosselmans, R.W. Martin, S. Pereira, and M.E. White: Structural analysis of InGaN epilayers. J. Phys.: Condens. Matter 13, 6977–6991 (2001).

    Google Scholar 

  24. T. Niermann, J.B. Park, and M. Lehmann: Local estimation of lattice constants in HRTEM images. Ultramicroscopy 111, 1083–1092 (2011).

    Article  CAS  Google Scholar 

  25. A. Pretorius, K. Müller, T. Yamaguchi, R. Kröger, D. Hommel, and A. Rosenauer: Concentration evaluation in nanometre-sized InxGa1−xN Islands using transmission electron microscopy. Springer Proc. Phys. 120, 17–20 (2008).

    Article  CAS  Google Scholar 

  26. F. Hüe, M.J. Hÿtch, J-M. Hartmann, Y. Bogumilowicz, and A. Claverie: Strain measurements in SiGe devices by aberration-corrected high resolution electron microscopy. Springer Proc. Phys. 120, 149–152 (2008).

    Article  Google Scholar 

  27. D.E. Jesson and S. Pennycook: Incoherent imaging of crystals using thermally scattered electrons. Proc. R. Soc. London, Ser. A 449, 273–293 (1995).

    Article  CAS  Google Scholar 

  28. R.F. Egerton, P. Li, and M. Malac: Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  Google Scholar 

  29. T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, and C.J. Humphreys: Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope. Appl. Phys. Lett. 83, 5419 (2003).

    CAS  Google Scholar 

  30. A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P.V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, and S. Lutgen: Composition mapping in InGaN by scanning transmission electron microscopy. Ultramicroscopy 111, 1316–1327 (2011).

    Article  CAS  Google Scholar 

  31. K.H. Baloch, A.C. Johnston-Peck, K. Kisslinger, E.A. Stach, and S. Gradečak: Revisiting the “In-clustering” question in InGaN through the use of aberration-corrected electron microscopy below the knock-on threshold. Appl. Phys. Lett. 102, 191910 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Technology Innovation Program, 10048393, Core Technology Development of the Measurement and Analysis Techniques for the Promotion of Nanotechnology Commercialization funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Mo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y., Park, J.S., Yang, JM. et al. Quantitative compositional analysis of InxGa1−xN/GaN multiquantum wells in light-emitting diodes. Journal of Materials Research 30, 2893–2899 (2015). https://doi.org/10.1557/jmr.2015.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.188

Navigation