Skip to main content
Log in

Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Yttrium disilicates (Y2Si2O7), well known for its complex polymorphism, are promising candidates for high-temperature structural materials and environmental barrier coatings due to their good properties in harsh environments. In this study, the crystal structure, elastic stiffness, and temperature dependence of the lattice thermal conductivity of β-, γ-, and δ-Y2Si2O7 are studied using first-principles calculations. Divergences of elastic stiffness are attributed to the different crystal structures and bonding strength of the polymorphs. Specially, the Si–O–Si bridge of δ phase bends with an angle of 158.1°, and this configuration enhances the bonding heterogeneity but weakens the bonding strength and stability. According to the prediction of lattice thermal conductivity using the Debye–Slack model, β-, γ-, and δ-Y2Si2O7 are characterized with very low thermal conductivity. In addition, the deviation of lattice thermal conductivities of Y2Si2O7 polymorphs is dominated by two vital factors, anharmonicity of phonon scattering and complexity of crystal structure. The present method could be used to investigate the specific factors dominating lattice thermal conductivity and may promisingly be generalized to search novel candidates with extremely low lattice thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. J. Felsche: The crystal chemistry of the rare-earth silicates. Struct. Bonding 13, 99–197 (1973). Springer Berlin Heidelberg.

    Article  CAS  Google Scholar 

  2. Z.Q. Sun, Y.C. Zhou, J.Y. Wang, and M.S. Li: Thermal properties and thermal shock resistance of γ-Y2Si2O7. J. Am. Ceram. Soc. 91 (8), 2623–2629 (2008).

    Article  CAS  Google Scholar 

  3. K.N. Lee, D.S. Fox, and N.P. Bansal: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25, 1705–1715 (2005).

    Article  CAS  Google Scholar 

  4. J.Y. Wang, Y.C. Zhou, and Z.J. Lin: Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations. Acta Mater. 55, 6019–6026 (2007).

    Article  CAS  Google Scholar 

  5. Z.Q. Sun, M.S. Li, and Y.C. Zhou: Kinetics and mechanism of hot corrosion of γ-Y2Si2O7 in thin-film Na2SO4 molten salt. J. Am. Ceram. Soc. 91 (7), 2236–2242 (2008).

    Article  CAS  Google Scholar 

  6. Z.L. Hong, H. Yoshida, Y. Ikuhara, T. Sakuma, T. Nishimura, and M. Mitomo: The effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate. J. Eur. Ceram. Soc. 22 (4), 527–534 (2002).

    Article  CAS  Google Scholar 

  7. Z.Q. Sun, L. Wu, M.S. Li, and Y.C. Zhou: Preparation of Y2Si2O7/ZrO2 composites and their composition—Mechanical properties—Tribology relationships. J. Am. Ceram. Soc. 96 (10), 3228–3238 (2013).

    Article  CAS  Google Scholar 

  8. A.J. Fernandez-Carrion, M. Allix, P. Florian, M.R. Suchomel, and A.I. Becerro: Revealing structural detail in the high temperature La2Si2O7-Y2Si2O7 phase diagram by synchrotron powder diffraction and nuclear magnetic resonance spectroscopy. J. Phys. Chem. C 116 (40), 21523–21535 (2012).

    Article  CAS  Google Scholar 

  9. M.E. Fleet and X.Y. Liu: High-pressure rare earth silicates: Lanthanum silicate with barium phosphate structure, holmium silicate apatite, and lutetium disilicate type X. J. Solid State Chem. 178 (11), 3275–3283 (2005).

    Article  CAS  Google Scholar 

  10. N. Maier, G. Rixecker, and K.G. Nickel: Formation and stability of Gd, Y, Yb and Lu disilicates and their solid solutions. J. Solid State Chem. 179 (6), 1630–1635 (2006).

    Article  CAS  Google Scholar 

  11. J. Ito and H. Johnson: Synthesis and study of yttrialite. Am. Mineral. 53, 1940–1952 (1968).

    CAS  Google Scholar 

  12. J. Parmentier, P.R. Bodart, L. Audoin, G. Massouras, D.P. Thompson, R.K. Harris, P. Goursat, and J.L. Besson: Phase transformations in gel-derived and mixed-powder-derived yttrium disilicate, Y2Si2O7, by X-ray diffraction and 29Si MAS NMR. J. Solid State Chem. 149 (1), 16–20 (2000).

    Article  CAS  Google Scholar 

  13. Y.X. Luo, J.M. Wang, J.Y. Wang, J.N. Li, and Z.J. Hu: Theoretical predictions on elastic stiffness and intrinsic thermal conductivities of yttrium silicates. J. Am. Ceram. Soc. 97 (3), 945–951 (2014).

    Article  CAS  Google Scholar 

  14. H.J. Cong, H.J. Zhang, J.Y. Wang, W.T. Yu, J.D. Fan, X.F. Cheng, S.Q. Sun, J. Zhang, Q.M. Lu, C.J. Jiang, and R. Boughton: Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: Evaluation as a new laser matrix. J. Appl. Crystallogr. 42 (2), 284–294 (2009).

    Article  CAS  Google Scholar 

  15. V. Milman and M.C. Warren: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241–251 (2001).

    CAS  Google Scholar 

  16. L.C. Sun, B. Liu, J.M. Wang, J.Y. Wang, Y.C. Zhou, and Z.J. Hu: Y4Ai2O7N2: A new oxynitride with low thermal conductivity. J. Am. Ceram. Soc. 95 (10), 3278–3284 (2012).

    Article  CAS  Google Scholar 

  17. R. Hill: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65 (5), 349–354 (1952).

    Article  Google Scholar 

  18. D.R. Clarke: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67–74 (2003).

    Article  Google Scholar 

  19. C. Kittel: Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), p. 100.

    Google Scholar 

  20. D.T. Morelli and G.A. Slack: High lattice thermal conductivity solids. In High Thermal Conductivity Materials, edited by Subhash L. Shindé and Jitendra S. Goela Springer, New York, 2006; pp. 37–68.

    Chapter  Google Scholar 

  21. B.D. Sanditov, Sh.B. Tsydypov, and D.S. Sanditov: Relation between the Grüneisen constant and Poisson’s ratio of vitreous system. Acoust. Phys. 53 (5), 594–597 (2007).

    Article  CAS  Google Scholar 

  22. H.A. Badehian, H. Salehi, and M. Ghoohestani: First-principles study of elastic, structural, electronic, thermodynamical, and optical properties of yttria (Y2O3) ceramic in cubic phase. J. Am. Ceram. Soc. 96 (6), 1832–1840 (2013).

    Article  CAS  Google Scholar 

  23. R.J. Bruls: The Thermal Conductivity of Magnesium Silicon Nitride, MgSiN2, Ceramics and Related Materials, Chapter 8 (Technische Universiteit Eindhoven, Eindhoven, 2000).

    Google Scholar 

  24. K. Liddell and D.P. Thompson: X-ray diffraction data for yttrium silicates. Trans. J. Br. Ceram. Soc. 85 (1), 17–22 (1986).

    CAS  Google Scholar 

  25. K. Liddell: University of Newcastle upon Tyne, England, UK. Private Communication, 1990.

  26. T.R. Dinger, R.S. Rai, and G. Thomas: Crystallization behavior of a glass in the Y2O3-SiO2-AlN system. J. Am. Ceram. Soc. 71 (4), 236–244 (1988).

    Article  CAS  Google Scholar 

  27. D.W.J. Cruickshank: The role of 3d-orbitals in π-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen. Journal of the Chemical Society (Resumed), 1077, 5486–5504 (1961).

    Article  Google Scholar 

  28. M.D. Segall, R. Shah, C.J. Pickard, and M.C. Payne: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54 (23), 16317–16320 (1996).

    Article  CAS  Google Scholar 

  29. W.Y. Ching, L.Z. Quyang, and Y.N. Xu: Electronic and optical properties of Y2SiO5 and Y2Si2O7 with comparisons to α-SiO2 and Y2O3. Phys. Rev. B 67 (24), 245108 (2003).

    Article  Google Scholar 

  30. Z.Q. Sun, J.Y. Wang, M.S. Li, and Y.C. Zhou: Mechanical properties and damage tolerance of Y2SiO5. J. Eur. Ceram. Soc. 28, 2895–2901 (2008).

    Article  CAS  Google Scholar 

  31. Z.Q. Sun, Y.C. Zhou, J.Y. Wang, and M.S. Li: γ-Y2Si2O7, a machinable silicate ceramics: Mechanical properties and machinability. J. Am. Ceram. Soc. 90 (8), 2535–2541 (2007).

    Article  CAS  Google Scholar 

  32. B. Liu, J.Y. Wang, Y.C. Zhou, and F.Z. Li: Temperature dependence of elastic properties for amorphous SiO2 by molecular dynamics simulation. Chin. Phys. Lett. 25 (8), 2747 (2008).

    Article  CAS  Google Scholar 

  33. Z.J. Yang, Y.D. Guo, R.F. Linghu, and X.D. Yang: First-principles calculation of the lattice compressibility, elastic anisotropy and thermodynamic stability of V2GeC. Chin. Phys. B 21 (3), 036301 (2012).

    Article  Google Scholar 

  34. E.E. Boakye, K.A. Keller, P.S. Mogilevsky, T.A. Parthasarathy, M.A. Ahrens, R.S. Hay, and M.K. Cinibulk: Processing and testing Re2Si2O7 matrix composites. In Ceramic Engineering and Science Proceedings, Amer. Ceram. Soc. (ACerS), Westerville, OH, (2013); pp. 233–242.

    Google Scholar 

  35. R.G. Wang, W. Pan, J. Chen, M.H. Fang, Z.Z. Cao, and Y.M. Luo: Synthesis and sintering of LaPO4 powder and its application. Mater. Chem. Phys. 79 (1), 30–36 (2003).

    Article  CAS  Google Scholar 

  36. B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1993).

    Book  Google Scholar 

  37. J.F. Nye: Physical Properties of Crystals (Clarendon Press, Oxford, 1964).

    Google Scholar 

  38. B. Liu, J.Y. Wang, Y.C. Zhou, T. Liao, and F.Z. Li: Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore. Acta Mater. 55 (9), 2949–2957 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences Foundation of China under Grant Nos. 51032006 and 51372252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wang, J., Li, J. et al. Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7. Journal of Materials Research 30, 493–502 (2015). https://doi.org/10.1557/jmr.2015.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.1

Navigation