Skip to main content
Log in

Martensitic transformation in melt-spun Heusler Ni–Mn–Sn–Co ribbons

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Heusler Ni–Mn–(Ga, In, Sn, Sb) materials can provide large magnetic-field-induced strain, giant magnetocaloric and magnetoresistance effects based on their first-order solid-state martensitic transformation. In the present work, effects of Co doping on martensitic transformation behavior in melt-spun Ni–Mn–Sn ribbons were studied by x-ray diffraction, scanning/transmission electron microscopy, and thermal analysis. Experimental results showed that both martensitic transition and austenite Curie temperatures increased linearly with Co addition to Ni49Mn39Sn12; and meanwhile, crystal structures of the martensite evolved from four-layered orthorhombic (4O) to five-layered orthorhombic (10M), and then seven-layered monoclinic (14M). The compositional dependence of the martensitic transition temperatures was well correlated with changes of valence electron concentration (e/a) and unit-cell volume of high-temperature austenite. It was proposed that both increase of valence electron concentration and shrinkage of austenite unit-cell volume with Co addition are favorable to the occurrence of martensitic transformation. In addition, the Curie temperature of austenite increases with Co addition, which was ascribed to the enhancement of ferromagnetic exchange interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, LI. Mañosa, A. Planes, E. Suard, and B. Ouladdiaf: Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007).

    Article  Google Scholar 

  2. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, LI. Mañosa, and A. Planes: Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450 (2005).

    Article  CAS  Google Scholar 

  3. K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, and K. Ishida: Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl. Phys. Lett. 89, 182510 (2006).

    Article  Google Scholar 

  4. Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, B.X. Gu, and Y.W. Du: Low-field inverse magnetocaloric effect in Ni50−xMn39+ xSn11 Heusler alloys. Appl. Phys. Lett. 90, 042507 (2007).

    Article  Google Scholar 

  5. V.K. Sharma, M.K. Chattopadhyay, R. Kumar, T. Ganguli, P. Tiwari, and S.B. Roy: Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J. Phys.: Condens. Matter 19, 496207 (2007).

    Google Scholar 

  6. S. Chatterje, S. Giri, S. Majumdar, and S.K. De: Giant magnetoresistance and large inverse magnetocaloric effect in Ni2Mn1.36Sn0.64 alloy. J. Phys. D: Appl. Phys. 42, 065001 (2009).

    Article  Google Scholar 

  7. H.X. Zheng, D.Z. Wu, S.C. Xue, J. Frenzel, G. Eggeler, and Q.J. Zhai: Martensitic transformation in rapidly solidified Ni49Mn39Sn12 ribbons. Acta Mater. 59(14), 5962 (2011).

    Article  Google Scholar 

  8. T. Krenke, E. Duman, M. Acet, X. Moya, LI. Mañosa, and A. Planes: Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 102, 033903 (2007).

    Article  Google Scholar 

  9. Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, and Y.W. Du: Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni–Mn–Sn alloys. Mater. Sci. Eng. B 157, 40 (2009).

    Article  CAS  Google Scholar 

  10. B. Gao, F.X. Hu, J. Shen, J. Wang, J.R. Sun, and B.G. Shen: Field-induced structural transition and the related magnetic entropy change in Ni43Mn43Co3Sn11 alloy. J. Magn. Magn. Mater. 321, 2571 (2009).

    Article  CAS  Google Scholar 

  11. K. Fukushima, K. Sano, T. Kanomata, H. Nishihara, Y. Furutani, T. Shishido, W. Ito, R.Y. Umetsu, R. Kainuma, K. Oikawa, and K. Ishida: Phase diagram of Fe-substituted Ni–Mn–Sn shape memory alloys. Scr. Mater. 61, 813 (2009).

    Article  CAS  Google Scholar 

  12. H.S. Liu, C.L. Zhang, Z.D. Han, H.C. Xuan, D.H. Wang, and Y.W. Du: The effect of Co doping on the magnetic entropy changes in Ni44−xCoxMn45Sn11 alloys. J. Alloys Compd. 467, 27 (2009).

    Article  CAS  Google Scholar 

  13. D.H. Wang, C.L. Zhang, H.C. Xuan, Z.D. Han, J.R. Zhang, S.L. Tang, B.X. Gu, and Y.W. Du: The study of low-field positive and negative magnetic entropy changes in Ni43Mn46−xCuxSn11 alloys. J. Appl. Phys. 102, 013909 (2007).

    Article  Google Scholar 

  14. D.Y. Cong, S. Roth, and L. Schultz: Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys. Acta Mater. 60, 5335 (2012).

    Article  CAS  Google Scholar 

  15. F. Chen, Y.X. Tong, Y.J. Huang, B. Tian, L. Li, and Y.F. Zheng: Suppression of γ phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties. Intermetallics 36, 81 (2013).

    Article  Google Scholar 

  16. J.D. Santos, T. Sanchez, P. Alvarez, M.L. Sanchez, J.L. Sánchez Llamazares, B. Hernando, LI. Escoda, J.J. Suñol, and R. Varga: Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J. Appl. Phys. 103, 07B326 (2008).

    Article  Google Scholar 

  17. B. Hernando, J.L. Sánchez Llamazares, J.D. Santos, LI. Escoda, J.J. Suñol, R. Varga, D. Baldomir, and D. Serantes: Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.4 ribbons. Appl. Phys. Lett. 92, 042504 (2008).

    Article  Google Scholar 

  18. I. Babita, S.I. Patil, and S. Ram: First order structural transformation and inverse magnetocaloric effect in melt-spun Ni–Mn–Sn ribbons. J. Phys. D: Appl. Phys. 43, 205002 (2010).

    Article  Google Scholar 

  19. D.Z. Wu, S.C. Xue, J. Frenzel, G. Eggeler, Q.J. Zhai, and H.X. Zheng: Atomic ordering effect in Ni50Mn37Sn13 magnetocaloric ribbons. Mater. Sci. Eng. A 534, 568 (2012).

    Article  CAS  Google Scholar 

  20. J. Smit: Magnetism in Hume-Rothery alloys. J. Phys. F: Met. Phys. 8, 2139 (1978).

    Article  CAS  Google Scholar 

  21. A.T. Zayak, W.A. Adeagbo, P. Entel, and K.M. Rabe: e/a dependence of the lattice instability of cubic Heusler alloys from first principles. Appl. Phys. Lett. 88, 111903 (2006).

    Article  Google Scholar 

  22. T. Krenke, X. Moya, S. Aksoy, M. Acet, P. Entel, LI. Mañosa, A. Planes, Y. Elerman, A. Yücel, and E.F. Wassermann: Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys. J. Magn. Magn. Mater. 310, 2788 (2007).

    Article  CAS  Google Scholar 

  23. V.V. Kokorin, I.A. Osipenko, and T.V. Shirina: Phase transitions in alloys Ni2MnGaxIn1−x. Phys. Met. Metallogr. 67, 173 (1989).

    Google Scholar 

  24. X.Q. Chen, F.J. Yang, X. Lu, and Z.X. Qin: The way composition affects martensitic transformation temperatures of Ni–Mn–Ga Heusler alloys. Phys. Status Solidi B 244(3), 1047 (2007).

    Article  CAS  Google Scholar 

  25. E. Dogan, I. Karaman, N. Singh, A. Chivukula, H.S. Thawabi, and R. Arroyave: The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater. 60, 3545 (2012).

    Article  CAS  Google Scholar 

  26. A.R. Williams, V.L. Moruzzi, A.P. Malozemoff, and K. Terakura: Generalized Slater-Pauling curve for transition-metal magnets. IEEE Trans. Magn. 19(5), 1983 (1983).

    Article  Google Scholar 

  27. H.X. Zheng, W. Wang, S.C. Xue, Q.J. Zhai, J. Frenzel, and Z.P. Luo: Composition-dependent crystal structure and martensitic transformation in Heusler Ni–Mn–Sn alloys. Acta Mater. 61, 4648 (2013).

    Article  CAS  Google Scholar 

  28. W. Wang, J.K. Yu, Q.J. Zhai, Z.P. Luo, and H.X. Zheng: Co-doping effect on the martensitic transformation and magnetic properties of Ni49Mn39Sn12 alloy. J. Magn. Magn. Mater. 346, 103 (2013).

    Article  CAS  Google Scholar 

  29. G.H. Fecher, H.C. Kandpal, S. Wurmehl, C. Felser, and G.J. Schönhense: Slater-Pauling rule and Curie temperature of Co2-based Heusler compounds. J. Appl. Phys. 99, 08J106 (2006).

    Article  Google Scholar 

  30. M. Sato, T. Okazaki, Y. Furuya, and M. Wuttig: Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater. Trans. 44(3), 372 (2003).

    Article  CAS  Google Scholar 

  31. J. Liu, M.X. Xia, Y.L. Huang, H.X. Zheng, and J.G. Li: Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J. Alloys Compd. 417(1–2), 96 (2006).

    Article  CAS  Google Scholar 

  32. E Şaşıoğlu, L.M. Sandratskii, and P. Bruno: First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2Mn X (X =Ga,In,Sn,Sb). Phys. Rev. B 70, 024427 (2004).

    Article  Google Scholar 

  33. L. Ma, H.W. Zhang, S.Y. Yu, Z.Y. Zhu, J.L. Chen, G.H. Wu, H.Y. Liu, J.P. Qu, and Y.X. Li: Magnetic-field-induced martensitic transformation in MnNiGa:Co alloys. Appl. Phys. Lett. 92, 032509 (2008).

    Article  Google Scholar 

  34. C.V. Stager and C.C.M. Campbell: Antiferromagnetic order in the Heusler alloy, Ni2Mn(MnxSn1−x). Can. J. Phys. 56, 674 (1978).

    Article  CAS  Google Scholar 

  35. Y. Kurtulus, Y.R. Dronskowski, G.D. Samolyuk, and V.P. Antropov: Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys. Phys. Rev. B 72, 014425 (2005).

    Article  Google Scholar 

  36. Z.D. Han, J. Chen, B. Qian, P. Zhang, X.F. Jiang, D.H. Wang, and Y.W. Du: Phase diagram and magnetocaloric effect in Mn2Ni1.64−xCoxSn0.36 alloys. Scr. Mater. 66, 121 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (51201096), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20123108120019), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Wang, W., Yu, J. et al. Martensitic transformation in melt-spun Heusler Ni–Mn–Sn–Co ribbons. Journal of Materials Research 29, 880–886 (2014). https://doi.org/10.1557/jmr.2014.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.57

Navigation