Skip to main content
Log in

Atomistic modeling of radiation-induced disordering and dissolution at a Ni/Ni3Al interface

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

L12-ordered γ′ precipitates embedded in a fcc γ matrix impart excellent mechanical properties to nickel-base superalloys. However, these enhanced mechanical properties are lost under irradiation, which causes the γ′ precipitates to disorder and dissolve. We conduct an atomic-level study of radiation-induced disordering and dissolution at a coherent (100) facet of an initially ordered γ′ Ni3Al precipitate neighboring a pure Ni γ matrix. Using molecular dynamics, we simulate collision-induced events by sequentially introducing 10 keV primary knock-on atoms with random positions and directions. In the absence of thermally assisted recovery processes, the ordered Ni3Al layer disorders rapidly within 0.1–0.2 dpa and then gradually dissolves into the adjacent Ni layer at higher doses. Both the disordering efficiency and mixing parameter calculated from the simulations lie within the range of values found by experiments carried out at room temperature, where thermally activated diffusion is insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, 1st ed. (Cambridge University Press, New York, NY, 2006).

    Book  Google Scholar 

  2. R.S. Nelson, J.A. Hudson, and D.J. Mazey: Stability of precipitates in an irradiation environment. J. Nucl. Mater. 44, 318 (1972).

    Article  CAS  Google Scholar 

  3. D.I. Potter and H.A. Hoff: Irradiation effects on precipitation in γ/γ′ Ni-Al alloys. Acta Metall. Mater. 24, 1155 (1976).

    Article  CAS  Google Scholar 

  4. D.I. Potter and D.G. Ryding: Precipitate coarsening, redistribution and renucleation during irradiation of Ni-6.35 wt% Al. J. Nucl. Mater. 71, 14 (1977).

    Article  CAS  Google Scholar 

  5. F. Bourdeau, E. Camus, C. Abromeit, and H. Wollenberger: Disordering and dissolution of γ′ precipitates under ion irradiation. Phys. Rev. B 50, 16205 (1994).

    Article  CAS  Google Scholar 

  6. E. Camus, C. Abromeit, F. Bourdeau, N. Wanderka, and H. Wollenberger: Evolution of long-range order and composition for radiation-induced precipitate dissolution. Phys. Rev. B 54, 3142 (1996).

    Article  CAS  Google Scholar 

  7. J.C. Ewert, G. Schmitz, F. Harbsmeier, M. Uhrmacher, and F. Haider: Ion induced disordering and dissolution of Ni3Al precipitates. Appl. Phys. Lett. 73, 3363 (1998).

    Article  CAS  Google Scholar 

  8. G. Schmitz, J.C. Ewert, F. Harbsmeier, M. Uhrmacher, and F. Haider: Phase stability of decomposed Ni-Al alloys under ion irradiation. Phys. Rev. B 63, 224113 (2001).

    Article  CAS  Google Scholar 

  9. H.K. Zhang, Z. Yao, C. Judge, and M. Griffiths: Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation. J. Nucl. Mater. 443, 49 (2013).

    Article  CAS  Google Scholar 

  10. H.K. Zhang, Z. Yao, M.A. Kirk, and M.R. Daymond: Stability of Ni3(Al, Ti) gamma prime precipitates in a nickel-based superalloy Inconel X-750 under heavy ion irradiation. Metall. Mater. Trans. A 45A, 3422 (2014).

    Article  CAS  Google Scholar 

  11. C. Sun, K. Hatter, T. Pollock, Y. Wang, O. Anderoglu, J. Valdez, B.P. Uberuaga, R. DIckson, and S.A. Maloy: (2014, unpublished).

  12. G. Martin: Phase-stability under irradiation: Ballistic effects. Phys. Rev. B 30, 1424 (1984).

    Article  CAS  Google Scholar 

  13. M. Przybylowicz, P. Bellon, and G. Martin: Modeling of ordered precipitates under irradiation: Dissolution regimes and interfacial width. Proceedings of an International Conference on Solid: Solid Phase Transformations, 1994, p. 999.

  14. S. Matsumura, Y. Tanaka, S. Müller, and C. Abromeit: Formation of precipitates in an ordering alloy and their dissolution under irradiation. J. Nucl. Mater. 239, 42 (1996).

    Article  CAS  Google Scholar 

  15. G. Martin and P. Bellon: Driven Alloys. Solid State Physics: Advances in Research and Applications, 50, 189 (1997).

    Article  CAS  Google Scholar 

  16. C. Abromeit, E. Camus, and S. Matsumura: Modelling of dissolution profiles of ordered particles under irradiation. J. Nucl. Mater. 271, 246 (1999).

    Article  Google Scholar 

  17. J.C. Ewert and G. Schmitz: Reordering kinetics of ion-disordered Ni3Al. Eur. Phys. J. B 17, 391 (2000).

    Article  CAS  Google Scholar 

  18. J. Ye, Y.H. Li, R. Averback, J.M. Zuo, and P. Bellon: Atomistic modeling of nanoscale patterning of L12 order induced by ion irradiation. J. Appl. Phys. 108, 054302 (2010).

    Article  CAS  Google Scholar 

  19. T. Diaz de la Rubia, A. Caro, and M. Spaczér: Kinetics of radiation-induced disordering of A3B intermetallic compounds: A molecular-dynamics-simulation study. Phys. Rev. B 47, 11483 (1993).

    Article  CAS  Google Scholar 

  20. T. Diaz de la Rubia, A. Caro, M. Spaczér, G.A. Janaway, M.W. Guinan, and M. Victoria: Radiation-induced disordering and defect production in Cu3Au and Ni3Al studied by molecular-dynamics simulation. Nucl. Instrum. Methods Phys. Res., Sect. B 80–81, 86 (1993).

    Article  Google Scholar 

  21. M. Spaczér, A. Caro, M. Victoria, and T. Diaz de la Rubia: Computer-simulations of disordering kinetics in irradiated intermetallic compounds. Phys. Rev. B 50, 13204 (1994).

    Article  Google Scholar 

  22. M. Spaczér, A. Caro, M. Victoria, and T.D. de la Rubia: Computer-simulation of disordering kinetics in irradiated A3B intermetallic compounds. J. Nucl. Mater. 212–215, 164 (1994).

    Article  Google Scholar 

  23. M. Spaczér, A. Caro, and M. Victoria: Evidence of amorphization in molecular-dynamics simulations on irradiated intermetallic NiAl. Phys. Rev. B 52, 7171 (1995).

    Article  Google Scholar 

  24. M. Spaczér, A. Caro, M. Victoria, and T.D. de la Rubia: Computer-simulations of disordering and amorphization kinetics in intermetallic compounds. Nucl. Instrum. Methods Phys. Res., Sect. B 102, 81 (1995).

    Article  Google Scholar 

  25. F. Gao and D.J. Bacon: Molecular-dynamics study of displacement cascades in Ni3Al. 1. General features and defect production efficiency. Philos. Mag. A 71, 43 (1995).

    Article  CAS  Google Scholar 

  26. F. Gao and D.J. Bacon: Molecular-dynamics study of displacement cascades in Ni3Al. 2. Kinetics, disordering and atomic mixing. Philos. Mag. A 71, 65 (1995).

    Article  CAS  Google Scholar 

  27. A. Almazouzi, M. Alurralde, M. Spaczer, and M. Victoria: Disordering in the Ni-Al system under low dose ion-irradiation: A computer simulation study. Mat. Res. Soc. Symp. Proc. 481, 371 (1998).

    Article  CAS  Google Scholar 

  28. F. Gao and D.J. Bacon: MD investigation of thermal spike effects on defect production and disordering by displacement cascades in Ni3Al. Microstructural Processes in Irradiated Materials 540, 661 (1999).

    CAS  Google Scholar 

  29. F. Gao and D.J. Bacon: Temperature effects on defect production and disordering by displacement cascades in Ni3Al. Mat. Res. Soc. Symp. Proc. 80, 1453 (2000).

    CAS  Google Scholar 

  30. S.A. Skirlo and M.J. Demkowicz: The role of thermal spike compactness in radiation-induced disordering and Frenkel pair production in Ni3Al. Scr. Mater. 67, 724 (2012).

    Article  CAS  Google Scholar 

  31. L. Zhang and M.J. Demkowicz: Radiation-induced mixing between metals of low solid solubility. Acta Mater. 76, 135 (2014).

    Article  CAS  Google Scholar 

  32. R.S. Averback, D. Peak, and L.J. Thompson: Ion-beam mixing in pure and in immiscible copper bilayer systems. Appl. Phys. A 39, 59 (1986).

    Article  Google Scholar 

  33. S. Müller: Doctoral Thesis, Universität Berlin, Berlin, Germany, 1997.

    Google Scholar 

  34. P. de Almeida, R. Schäublin, A. Almazouzi, M. Victoria, and M. Döbeli: Quantitative long-range-order measurement and disordering efficiency estimation in ion-irradiated bulk Ni3Al using cross-sectional conventional transmission electron microscopy. Appl. Phys. Lett. 77, 2680 (2000).

    Article  Google Scholar 

  35. A.J. Ardell and R.B. Nicholson: Coarsening of γ′ in Ni-Al alloys. J. Phys. Chem. Solids 27, 1793 (1966).

    Article  CAS  Google Scholar 

  36. A.J. Ardell and R.B. Nicholson: On modulated structure of aged Ni-Al alloys. Acta Met. 14, 1295 (1966).

    Article  CAS  Google Scholar 

  37. A.J. Ardell: An application of theory of particle coarsening–γ′ precipitate in Ni-Al alloys. Acta Met. 16, 511 (1968).

    Article  CAS  Google Scholar 

  38. M.S. Daw and M.I. Baskes: Semiempirical, quantum-mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  39. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  40. Y. Mishin: Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Mater. 52, 1451 (2004).

    Article  CAS  Google Scholar 

  41. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Solids (Pergamon, New York, NY, 1985).

    Google Scholar 

  42. G.P. Purja Pun and Y. Mishin: Development of an interatomic potential for the Ni-Al system. Philos. Mag. 89, 3245 (2009).

    Article  CAS  Google Scholar 

  43. D. Schwen and A. Caro: (2014, unpublished).

  44. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Oxford University Press, New York, NY, 1987).

    Google Scholar 

  45. P. de Almeida: The Order-disorder Transformation and Microstructural Evolution in Nickel-Aluminium Intermetallics After Heavy-Ion Irradiation. Doctoral Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000.

    Google Scholar 

  46. R.S. Averback: Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49 (1994).

    Article  CAS  Google Scholar 

  47. R.E. Stoller: Point defect survival and clustering fractions obtained from molecular dynamics simulations of high energy cascades. J. Nucl. Mater. 233–237, 999 (1996).

    Article  Google Scholar 

  48. K. Nordlund, M. Ghaly, R.S. Averback, and M. Caturla, T. Diaz de la Rubia and J. Tarus: Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B 57, 7556 (1998).

    Article  CAS  Google Scholar 

  49. D.J. Bacon, Y.N. Osetsky, R. Stoller, and R.E. Voskoboinikov: MD description of damage production in displacement cascades in copper and alpha-iron. J. Nucl. Mater. 323, 152 (2003).

    Article  CAS  Google Scholar 

  50. L. Malerba: Molecular dynamics simulation of displacement cascades in α-Fe: A critical review. J. Nucl. Mater. 351, 28 (2006).

    Article  CAS  Google Scholar 

  51. M.J. Norgett, M.T. Robinson, and I.M. Torrens: Proposed method of calculating displacement dose-rates. Nucl. Eng. Des. 33, 50 (1975).

    Article  Google Scholar 

  52. A. Caro, M. Victoria, and R.S. Averback: Threshold displacement and interstitial-atom formation energies in Ni3Al. J. Mater. Res. 5, 1409 (1990).

    Article  CAS  Google Scholar 

  53. H. Zhu, R.S. Averback, and M. Nastasi: Molecular-dynamics simulations of a 10 keV cascade in β-NiAl. Philos. Mag. A 71, 735 (1995).

    Article  CAS  Google Scholar 

  54. S. Plimpton: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  55. A. Stukowski: Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012).

    Article  CAS  Google Scholar 

  56. J.M. Cowley: An approximate theory of order in alloys. Phys. Rev. 77, 669 (1950).

    Article  CAS  Google Scholar 

  57. D.J. Bacon and T. Diaz de la Rubia: Molecular-dynamics computer-simulations of displacement cascades in metals. J. Nucl. Mater. 216, 275 (1994).

    Article  CAS  Google Scholar 

  58. L.R. Aronin: Radiation damage effects on order-disorder in nickel-manganese alloys. J. Appl. Phys. 25, 344 (1954).

    Article  CAS  Google Scholar 

  59. K.C. Russell: Phase-stability under irradiation. Prog. Mater. Sci. 28(3–4), 229 (1984).

    Article  CAS  Google Scholar 

  60. R.W. Balluffi, S.M. Allen, and W.C. Carter: Kinetics of Materials1 (John Wiley and Sons, Inc., Hoboken, NJ, 2005).

    Book  Google Scholar 

  61. B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, and L. Zepeda-Ruiz: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B 85, 184203 (2012).

    Article  CAS  Google Scholar 

  62. F.F. Komarov: Ion Beam Modification of Metals (Gordon & Breach Science, Philadelphia, PA, 1992).

    Google Scholar 

  63. C.P. Flynn and R.S. Averback: Electron-phonon interactions in energetic displacement cascades. Phys. Rev. B 38, 7118 (1988).

    Article  CAS  Google Scholar 

  64. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack: SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).

    Article  CAS  Google Scholar 

  65. A.F. Voter: Introduction to the kinetic Monte Carlo method. NATO Sci. Ser., II 235, 1 (2007).

    Article  Google Scholar 

  66. E. Martínez, J. Marian, M.H. Kalos, and J.M. Perlado: Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J. Comput. Phys. 227, 3804 (2008).

    Article  CAS  Google Scholar 

  67. A.F. Voter, F. Montalenti, T.C. Germann, B.P. Uberuaga, and J.A. Sprague: Accelerated molecular dynamics methods. Abstr. Pap. Am. Chem. Soc. 223, U500 (2002).

    Google Scholar 

  68. X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Daniel Schwen, Scott A. Skirlo, Cheng Sun, Wenshan Yu, and Liang Zhang for helpful discussions. This work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory under Project No. 20130118DR, under DOE Contract DE-AC52-06NA253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongsik Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Caro, A. & Demkowicz, M.J. Atomistic modeling of radiation-induced disordering and dissolution at a Ni/Ni3Al interface. Journal of Materials Research 30, 1456–1463 (2015). https://doi.org/10.1557/jmr.2014.377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.377

Navigation