Skip to main content
Log in

Selective laser sintering of composite copper–tin powders

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Selective laser sintering (SLS) is a rapidly developing additive manufacturing technique, with advantages in flexibility and low material waste. Many parameters used in a SLS process are determined by powder type: blended powders have limitations due to wetting and diffusion, while prealloyed powders require processing in a small temperature range dictated by the alloy composition. As an alternative to these, a coated powder was fabricated by electrochemical means. This tin–copper composite powder was compared with a blend of tin and copper powders, using metallographic, crystallographic, and thermal analysis techniques as well as SLS. It was found that, because of the uniform distribution of liquid and increased contact between phases in the composite powder, sintering took place in the composite powder but not in the blend. After a homogenization treatment, mechanical testing of the sintered samples showed that the strength and ductility were comparable to high-porosity materials produced using other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann.-Manuf. Technol. 56(2), 730 (2007).

    Article  Google Scholar 

  2. D. Gu and Y. Shen: Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 30(8), 2903 (2009).

    Article  CAS  Google Scholar 

  3. A.T. Hasouna, K. Nogi, and K. Ogino: Effects of temperature and atmosphere on the wettability of solid copper by liquid tin. Trans. Jpn. Inst. Met. 29(9), 748 (1988).

    Article  CAS  Google Scholar 

  4. D. Gu and Y. Shen: Effects of dispersion technique and component ratio on densification and microstructure of multi-component Cu-based metal powder in direct laser sintering. J. Mater. Process. Technol. 182(1–3), 564 (2007).

    Article  CAS  Google Scholar 

  5. J.P. Kruth, B. Van der Schueren, J.E. Bonse, and B. Morren: Basic powder metallurgical aspects in selective metal powder sintering. CIRP Ann.-Manuf. Technol. 45(1), 183 (1996).

    Article  Google Scholar 

  6. Y.P. Kathuria: Microstructuring by selective laser sintering of metallic powder. Surf. Coat. Technol. 116–119(0), 643 (1999).

    Article  Google Scholar 

  7. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow: Direct selective laser sintering of metals. Rapid Prototyping J. 1(1), 26 (1995).

    Article  Google Scholar 

  8. F. Klocke and C. Wagner: Coalescence behaviour of two metallic particles as base mechanism of selective laser sintering. CIRP Ann.-Manuf. Technol. 52(1), 177 (2003).

    Article  Google Scholar 

  9. N. Saunders and A.P. Miodownik: The Cu-Sn (copper-tin) system. Bull. Alloy Phase Diagrams 11(3), 278 (1990).

    Article  CAS  Google Scholar 

  10. J.W. Price: Tin and Tin Alloy Plating (Electrochemical Publications Limited, Ayr, Scotland, 1983).

    Google Scholar 

  11. R.M. German: Powder Metallurgy & Particulate Materials Processing (Metal Powder Industries Federation, Princeton, NJ, 2005).

    Google Scholar 

  12. R.M. German: Particle Packing Characteristics (Metal Powder Industries Federation, Princeton, NJ, 1989).

    Google Scholar 

  13. Y. Fujiwara and H. Enomoto: Intermetallic phase formation in electrochemical alloy deposition. J. Solid State Electrochem. 8(3), 167 (2004).

    Article  CAS  Google Scholar 

  14. W. Zhai, W.L. Wang, D.L. Geng, and B. Wei: A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu–Sn alloys. Acta Mater. 60(19), 6518 (2012).

    Article  CAS  Google Scholar 

  15. S. Fürtauer, D. Li, D. Cupid, and H. Flandorfer: The Cu–Sn phase diagram, Part I: New experimental results. Intermetallics 34(0), 142 (2013).

    Article  Google Scholar 

  16. Z. Mei, A.J. Sunwoo, and J.W. Morris: Analysis of low-temperature intermetallic growth in copper-tin diffusion couples. Metall. Trans. A 23(3), 857 (1992).

    Article  Google Scholar 

  17. I. Tuah-Poku, M. Dollar, and T.B. Massalski: A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint. Metall. Trans. A 19(3), 675 (1988).

    Article  Google Scholar 

  18. Y. Zhou: Analytical modeling of isothermal solidification during transient liquid phase (TLP) bonding. J. Mater. Sci. Lett. 20(9), 841 (2001).

    Article  CAS  Google Scholar 

  19. N.F. Kennon and J.S. Bowles: The crystallography of the B.C.C. to orthorhombic γ′1 martensite transformation in copper-tin alloys. Acta Metall. 17(4), 373 (1969).

    Article  CAS  Google Scholar 

  20. N. Saunders and A.P. Miodownik: Phase formation in co-deposited metallic alloy thin films. J. Mater. Sci. 22(2), 629 (1987).

    Article  CAS  Google Scholar 

  21. E.M. Castrodeza and C. Mapelli: Processing of brass open-cell foam by silica-gel beads replication. J. Mater. Process. Technol. 209(11), 4958 (2009).

    Article  CAS  Google Scholar 

  22. D.A. Ramirez, L.E. Murr, S.J. Li, Y.X. Tian, E. Martinez, J.L. Martinez, B.I. Machado, S.M. Gaytan, F. Medina, and R.B. Wicker: Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng., A 528(16–17), 5379 (2011).

    Article  CAS  Google Scholar 

  23. M. Shehata Aly, A. Almajid, S. Nakano, and S. Ochiai: Fracture of open cell copper foams under tension. Mater. Sci. Eng., A 519(1–2), 211 (2009).

    Article  Google Scholar 

  24. A.M. Parvanian and M. Panjepour: Mechanical behavior improvement of open-pore copper foams synthesized through space holder technique. Mater. Des. 49(0), 834 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Mr. Rosen Ivanov and Mr. Petr Fiurasek for their assistance in the experiments, and McGill University for providing funding through the McGill Engineering Doctoral Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Walker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, D.C., Caley, W.F. & Brochu, M. Selective laser sintering of composite copper–tin powders. Journal of Materials Research 29, 1997–2005 (2014). https://doi.org/10.1557/jmr.2014.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.194

Navigation