Skip to main content
Log in

Novel synthesis route to graphene using iron nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene is currently one of the most extensively studied materials because it displays a number of unique structural and electronic properties. A variety of methods are currently available for the growth of graphene; however, few are viable for large scale, cost-effective production of high quality graphene. Here, a novel growth process for few layer graphene using chemical vapor deposition (CVD) and a commercial iron nanopowder catalyst is described. This method is readily scalable so it can be used to produce a large volume of graphene sheets. Graphene sheets made from this process were characterized by Raman spectroscopy, and scanning and transmission electron microscopy. Raman spectroscopy shows that the product consists of few layer graphene sheets. This is the first reported method of utilizing nanoparticles to synthesize graphene by a CVD process, which typically produces multiwalled carbon nanotubes. A possible mechanism for the formation of graphene by this modified CVD process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieval, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. Nobelprize.Org: The Nobel Prize in Physics 2010. [cited 31, Aug 2012]; Available from:http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/ (2010).

  3. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  4. Z. Chen, W. Ren, B. Liu, L. Gao, S. Pei, Z-S. Wu, J. Zhao, and H-M. Cheng: Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon 48, 3543 (2010).

    Article  CAS  Google Scholar 

  5. M. Losurdo, M.M. Giangregorio, P. Capezzuto, and G. Bruno: Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 14, 13 (2011).

    Google Scholar 

  6. A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, and J. Kong: Growth of large-area single and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509 (2009).

    Article  CAS  Google Scholar 

  7. C. Mattevi, H. Kim, and M. Chhowalla: A review of chemical vapor deposition of graphene on copper. J. Mater. Chem. 21, 3324 (2010).

    Article  Google Scholar 

  8. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2008).

    Article  Google Scholar 

  9. N.A. Vinogradov, A.A. Zakharov, V. Kocevskil, J. Ruszl, K.A. Simonov, O. Eriksson, A. Mikkelsen, E. Lundgren, A.S. Vinogradov, N. Mårtensson, and A.B. Preobrajenski: Formation and structure of graphene waves on Fe(110). Phys. Rev. Lett. 109, 026101 (2012).

    Article  CAS  Google Scholar 

  10. H. An, W-J. Lee, and J. Jung: Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 11, S81 (2011).

    Article  Google Scholar 

  11. A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, and H. Zhang: Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int. J. Plast. 22, 195 (2006).

    Article  CAS  Google Scholar 

  12. A. Goyal, D.A. Wiegand, F.J. Owens, and Z. Iqbal: Enhanced yield strength in iron nanocomposite with in situ grown single-wall carbon nanotubes. J. Mater. Res. 21, 522 (2005).

    Article  Google Scholar 

  13. A. Goyal, D.A. Wiegand, F.J. Owens, and Z. Iqbal: Synthesis of carbide-free, high strength iron-carbon nanotube composite by in situ nanotube growth. Chem. Phys. Lett. 442, 365 (2007).

    Article  CAS  Google Scholar 

  14. A. Goyal: New approaches to scaled-up carbon nanotube synthesis and nanotube-based metal composites and sensors. PhD Dissertation, New Jersey Institute of Technology, 2006.

  15. R.B. Patel, J. Liu, S. Roy, S. Mitra, R.N. Dave, and Z. Iqbal: Formation of stainless steel–carbon nanotube composites using a scalable chemical vapor infiltration process. J. Mater. Sci. 48, 1387 (2013).

    Article  CAS  Google Scholar 

  16. R.B. Patel, J. Liu, J. Eng, and Z. Iqbal: One-step CVD synthesis of a boron nitride nanotube-iron composite. J. Mater. Res. 26, 1332 (2011).

    Article  CAS  Google Scholar 

  17. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  18. A.C. Ferrari and D.M. Basko: Raman spectroscopy as a versatile tool for studying the properties of graphene.Nat. Nanotechnol. 8, 235 (2013).

    Article  CAS  Google Scholar 

  19. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz: Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007).

    Article  CAS  Google Scholar 

  20. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari: Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).

    Article  Google Scholar 

  21. D.M. Basko: Theory of resonant multiphonon Raman scattering in graphene. Phys. Rev. B 78, 125418 (2008).

    Article  Google Scholar 

  22. L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).

    Article  CAS  Google Scholar 

  23. M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, and M. Endo: Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 59, R6585 (1999).

    Article  CAS  Google Scholar 

  24. R.B. Patel: Synthesis and characterization of novel boron-based nanostructures and composites. PhD Dissertation, New Jersey Institute of Technology, 2013.

Download references

ACKNOWLEDGMENT

This work was supported by the US Army, ARDEC under contract W15QKN-10-D-0503-0002 and performed in the Iqbal group at the Chemistry and Environmental Science Department of the New Jersey Institute of Technology.24 One of us (CY) was supported by CarboMet LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajen B. Patel.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2014.165.

Supplemental Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R.B., Yu, C., Chou, T. et al. Novel synthesis route to graphene using iron nanoparticles. Journal of Materials Research 29, 1522–1527 (2014). https://doi.org/10.1557/jmr.2014.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.165

Navigation