Skip to main content
Log in

Nanostructural characterization of carbon nanotubes in laser-sintered polyamide 12 by 3D-TEM

  • Polymer
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three-dimensional transmission electron microscopy (3D-TEM) is a powerful technology that provides 3D characterization of the internal details of a material. In this work, for the first time, 3D-TEM was used to characterize a laser-sintered polymer nanocomposite. The dispersion of carbon nanotubes (CNTs) in the laser-sintered polyamide 12 (PA12)-CNT nanocomposite parts was evaluated. At first, to prepare 3D-TEM samples at specific locations, a focused ion beam technique was used. Then, high quality two-dimensional (2D)-TEM images were achieved at various scanning angles for the PA12-CNT laser-sintered sample. After that, 3D-TEM images were reconstructed by combining all the 2D-TEM images. Results revealed that the CNTs were agglomerate-free in the PA12-CNT parts after laser sintering, which helps to explain previously reported improvement in mechanical properties of laser-sintered PA12-CNT parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. R.D. Goodridge, C.J. Tuck, and R.J.M. Hague: Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 57(2), 229–267 (2012).

    Article  CAS  Google Scholar 

  2. N. Hopkinson, R.J.M. Hague, and P.M. Dickens: Rapid Manufacturing: An Industrial Revolution for the Digital Age (John Wiley, England, 2006).

    Google Scholar 

  3. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56(2), 730–759 (2007).

    Article  Google Scholar 

  4. T.T. Wohlers: Wohlers Associates Inc. Wohlers Report 2009: State of the Industry: Annual Worldwide Progress Report (Wohlers Associates, Fort Collins, CO, 2009).

    Google Scholar 

  5. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (Springer, London, 2009).

    Google Scholar 

  6. R.D. Goodridge, M.L. Shofner, R.J.M. Hague, M. McClelland, M.R. Schlea, and R.B. Johnson et al.: Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym. Test. 30(1), 94–100 (2011).

    Article  CAS  Google Scholar 

  7. G.V. Salmoria, R.A. Paggi, A. Lago, and V.E. Beal: Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym. Test. 30(6), 611–615 (2011).

    Article  CAS  Google Scholar 

  8. S.C. Lao, M.F. Kan, C.K. Lam, D.Z. Chen, J.H. Koo, T. Moon et al.: Polyamide 11-carbon nanotubes nanocomposites: Processing, morphological, and property characterisation. Proceedings of the International Solid Freeform Fabrication Symposium — An Additive Manufacturing Conference (Austin, TX, 2010); pp. 98–107.

  9. S.R. Athreya, K. Kalaitzidou, and S. Das: Mechanical and microstructural properties of nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding. Compos. Sci. Technol. 71(4), 506–510 (2011).

    Article  CAS  Google Scholar 

  10. S.R. Athreya, K. Kalaitzidou, and S. Das: Processing and characterization of a carbon black-filled electrically conductive nylon-12 nanocomposite produced by selective laser sintering. Mater. Sci. Eng., A 527(10–11), 2637–2642 (2010).

    Article  Google Scholar 

  11. P.K. Jain, P.M. Pandey, and P.V.M. Rao: Selective laser sintering of clay-reinforced polyamide. Polym. Compos. 31(4), 732–743 (2010).

    CAS  Google Scholar 

  12. J. Kim and T.S. Creasy: Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite. Polym. Test. 23(6), 629–636 (2004).

    Article  CAS  Google Scholar 

  13. H. Chung and S. Das: Functionally graded nylon-11/silica nanocomposites produced by selective laser sintering. Mater. Sci. Eng., A 487(1–2), 251–257 (2008).

    Article  Google Scholar 

  14. C.Z. Yan, Y.S. Shi, J.S. Yang, and J.H. Liu: A nanosilica/nylon-12 composite powder for selective laser sintering. J. Reinf. Plast. Compos. 28(23), 2889–2902 (2009).

    Article  CAS  Google Scholar 

  15. V. Mittal: Optimization of Polymer Nanocomposite Properties (John Wiley & Sons, Weinheim, 2010).

    Book  Google Scholar 

  16. J. Bai, R.D. Goodridge, R.J.M. Hague, and M. Song: Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes. Polym. Eng. Sci. 53(9), 1937–1946 (2013).

    Article  CAS  Google Scholar 

  17. J. Bai, R.D. Goodridge, R.J.M. Hague, M. Song, and M. Okamoto: Influence of carbon nanotubes on the rheology and dynamic mechanical properties of polyamide-12 for laser sintering. Polym. Test. 36, 95–100 (2014).

    Article  CAS  Google Scholar 

  18. C.Z. Yan, Y.S. Shi, J.S. Yang, and J.H. Liu: An organically modified montmorillonite/nylon-12 composite powder for selective laser sintering. Rapid Prototyping J. 17(1), 28–36 (2011).

    Article  Google Scholar 

  19. P.M. Ajayan, L.S. Schadler, C. Giannaris, and A. Rubio: Single-walled carbon nanotube–polymer composites: Strength and weakness. Adv. Mater. 12(10), 750–753 (2000).

    Article  CAS  Google Scholar 

  20. X.L. Xie, Y.W. Mai, and X.P. Zhou: Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng., R 49(4), 89–112 (2005).

    Article  Google Scholar 

  21. J.A. Frank: Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope (Plenum Press, New York, 1992).

    Book  Google Scholar 

  22. S. Kohjiya, A. Katoh, J. Shimanuki, T. Hasegawa, and Y. Ikeda: Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. Polymer 46(12), 4440–4446 (2005).

    Article  CAS  Google Scholar 

  23. P.A. Midgley and M. Weyland: 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96(3–4), 413–431 (2003).

    Article  CAS  Google Scholar 

  24. K.P. de Jong and A.J. Koster: Three-dimensional electron microscopy of mesoporous materials—Recent strides towards spatial imaging at the nanometer scale. ChemPhysChem 3(9), 776–780 (2002).

    Article  Google Scholar 

  25. D. Cai, J. Jin, and M. Song: UK Patent WO/2009/034361, 2009.

  26. A.J. Koster, H. Chen, J.W. Sedat, and D.A. Agard: Automated microscopy for electron tomography. Ultramicroscopy 46(1–4), 207–227 (1992).

    Article  CAS  Google Scholar 

  27. J. Mayer, L.A. Giannuzzi, T. Kamino, and J. Michael: TEM sample preparation and FIB-induced damage. MRS Bull. 32(5), 400–407 (2007).

    Article  CAS  Google Scholar 

  28. H. Zarringhalam, C. Majewski, and N. Hopkinson: Degree of particle melt in nylon-12 selective laser-sintered parts. Rapid Prototyping J. 15(2), 126–132 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank EPSRC, UK and the Transmission Electron Microscopy station in the National Institute of Materials Science (NIMS), Japan for supporting this work. We would also like to acknowledge the GB Sasakawa Foundation for providing a travel bursary to J. Bai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth D. Goodridge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Goodridge, R.D., Hague, R.J.M. et al. Nanostructural characterization of carbon nanotubes in laser-sintered polyamide 12 by 3D-TEM. Journal of Materials Research 29, 1817–1823 (2014). https://doi.org/10.1557/jmr.2014.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.126

Navigation