Skip to main content
Log in

Bulk response and grain boundary microelectrical activity of high TC BaTiO3–(Bi1/2K1/2)TiO3-based positive temperature coefficient of resistance ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead-free positive temperature coefficient of resistance (PTC) thermistors were synthesized from (1 − x/100)BaTiO3–(x/100)(Bi1/2K1/2)TiO3-based solid solutions, using a conventional mixed-oxide fabrication route, and sintered in N2 followed by air annealing. A maximum TC of 205 °C was achieved for x = 20. An increase in x from 0 to 20 decreased the grain size by more than 92% and increased room temperature resistivity (ρRT) by 7 orders of magnitude. For x ≤ 10, PTC ratio (ρmaxmin) ≈ 104.5 and temperature coefficient of resistivity (α) > 10.3%/°C were achieved using Mn and Al2O3:SiO2:TiO2 (AST) additions. For x > 10, ρmaxmin > 103 and α > 8%/°C were only obtained in samples sintered in N2 without subsequent air annealing. Complex impedance analysis revealed three relaxation processes, attributed to a semiconducting grain core, a PTC active grain boundary interface, and a grain boundary insulating layer. Local electrical activity was investigated by hot-stage conductive mode microscopy. The existence of symmetrical grain boundary electron beam-induced current and β-conductivity contrast at the grain boundaries, consistent with the presence of an electron trapping two-dimensional grain boundary plane, compensated by positive space charge layers and a low conductivity vacancy-rich layer, was revealed for the first time within this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE II.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. W. Heywang: Resistivity anomaly in doped barium titanate. J. Am. Ceram. Soc. 47(10), 484 (1964).

    Article  CAS  Google Scholar 

  2. G.H. Jonker: Some aspects of semiconducting barium titanate. Solid State Electron. 7, 895 (1964).

    Article  CAS  Google Scholar 

  3. Japan Electronic Manufactures Association Standard EMAS-8202, 1988.

  4. B. Huybrechts, K. Ishikazi, and M. Takata: Review: The positive temperature coefficient of resistivity. J. Mater. Sci. 30, 2463 (1995).

    Article  CAS  Google Scholar 

  5. M. Kuwabara and K. Kumamoto: Ptcr characteristics in barium titanate ceramics with Curie point between 60 and 360 degrees centigrade. J. Am. Ceram. Soc. 66, C–214 (1983).

    Article  Google Scholar 

  6. Directive 2002/95/EC of the European Parliament and of the Council. Restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J L 037, 0019–0023 (2003).

    Google Scholar 

  7. H. Takeda, T. Shimada, Y. Katsuyama, and T. Shiosaki: Fabrication and operation limit of lead-free PTCR ceramics using BaTiO3-(Bi1/2Na1/2)TiO3 system. J. Electroceram. 22, 263 (2009).

    Article  CAS  Google Scholar 

  8. T. Shimada, K. Touji, Y. Katsuyama, H. Takeda, and T. Shiosaki: Lead free PTCR ceramics and its electrical properties. J. Eur. Ceram. Soc. 27, 3877 (2007).

    Article  CAS  Google Scholar 

  9. P-H. Xiang, H. Takeda, and T. Shiosaki: High TC lead free BaTiO3-(Bi1/2Na1/2)TiO3 positive temperature coefficient of resistivity ceramics with electrically heterogeneous structure. Appl. Phys. Lett. 91, 162904 (2007).

    Article  Google Scholar 

  10. H. Ihring: PTC effect in BaTiO3 as a function of doping with 3d Elements. J. Am. Ceram. Soc. 64, 617 (1981).

    Article  Google Scholar 

  11. M. Kuwabara, K. Morimo, and T. Matsunaga: Single gain-boundary in PTC resistors. J. Am. Ceram. Soc. 79, 997 (1996).

    Article  CAS  Google Scholar 

  12. J. Seaton and C. Leach: Conductive mode imaging of thermistor grain boundaries. J. Eur. Ceram. Soc. 24, 1191 (2004).

    Article  CAS  Google Scholar 

  13. K. Hayashi, T. Yamamoto, and T. Sakuma: Grain orientation dependence of the PTCR effect in niobium-doped barium titanate. J. Am. Ceram. Soc. 79, 1669 (1996).

    Article  CAS  Google Scholar 

  14. J.D. Russell and C. Leach: Problems associated with imaging resistive barriers in BaTiO3 ceramics using the SEM conductive mode. J. Eur. Ceram. Soc. 15, 617 (1995).

    Article  CAS  Google Scholar 

  15. J.D. Russell and C. Leach: β-Conductivity contrast at barium titanate thermistor grain boundaries. J. Eur. Ceram. Soc. 16, 1035–1039 (1996).

    Article  CAS  Google Scholar 

  16. C. Leach: The effect of voltage bias on the EBIC contrast present at varistor grain boundaries. Interface Sci. 8, 375 (2000).

    Article  CAS  Google Scholar 

  17. C.F. Buhrer: Some properties of bismuth perovskites. J. Chem. Phys. 36, 798 (1962).

    Article  CAS  Google Scholar 

  18. M. Nakahara and T. Murakami: Electronic states of Mn ions in Ba0.97Sr0.03TiO3 single crystals. J. Appl. Phys. 45, 3795 (1974).

    Article  CAS  Google Scholar 

  19. J. Illingsworth, H.M. Al-Allak, A.W. Brinkman, and J. Woods: The influence of Mn on the grain-boundary potential barrier characteristics of donor-doped BaTiO3 ceramics. J. Appl. Phys. 67(4), 2088 (1989).

    Article  Google Scholar 

  20. H-F. Cheng: Effect of sintering aids on the electrical properties of positive temperature coefficient of resistivity BaTiO3 ceramics. J. Appl. Phys. 66(3), 1382 (1989).

    Article  CAS  Google Scholar 

  21. H.M. Allak, T.V. Parry, G.J. Russell, and J. Woods: Effect of aluminum on the electrical and mechanical properties of PTCR BaTiO3 ceramics as a function of the sintering temperature. J. Mater. Sci. 23, 1083–1089 (1988).

    Article  Google Scholar 

  22. P-H. Xiang, H. Takeda, and T. Shiosaki: Characterization of manganese doped BaTiO3-(Bi1/2Na1/2)TiO3 positive temperature coefficient of resistivity ceramics using impedance spectroscopy. J. Appl. Phys. 103, 064102 (2008).

    Article  Google Scholar 

  23. H. Moriwaka: First-principle calculation of formation energy of neutral point defects in perovskite type BaTiO3. Int. J. Quantum Chem. 99, 7556 (2004).

    Google Scholar 

  24. N-H. Chan and D.M. Smyth: Defect chemistry on donor-doped BaTiO3. J. Am. Ceram. Soc. 67(4), 285 (1984).

    Article  Google Scholar 

  25. C. Leach and M.A. Zubair: Microstructural and electrical property evolution in an acceptor-dopant free positive temperature coefficient thermistor. Mater. Sci. Semicond. Process. 15(1), 47–51 (2012).

    Article  CAS  Google Scholar 

  26. C-J. Ting, C-J. Peng, H-Y. Lu, and S-T. Wu: Lanthanum-magnesium and lanthanum-manganese donor-acceptor codoped semiconducting barium titanate. J. Am. Ceram. Soc. 73, 329 (1990).

    Article  CAS  Google Scholar 

  27. D.C. Sinclair and A.R. West: Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989).

    Article  CAS  Google Scholar 

  28. M.A. Zubair and C. Leach: Modeling the resistance: Temperature characteristics of a positive temperature coefficient thermistor, using the experimentally determined permittivity data. Appl. Phys. Lett. 91, 082105 (2007).

    Article  Google Scholar 

  29. J. Palm: Local investigation of recombination at grain boundaries of silicon by grain boundary-electron beam induced current. J. Appl. Phys. 74, 1169 (1993).

    Article  CAS  Google Scholar 

  30. M.A. Zubair and C. Leach: Modeling the effect of SiO2 additions and cooling rate on the electrical behavior of donor-acceptor co-doped positive temperature coefficient thermistors. J. Appl. Phys. 103, 123713 (2008).

    Article  Google Scholar 

  31. J. Daniels and R. Wernicke: New aspects of an improved PTC model. Philips Res. Rep. 31, 594 (1976).

    Google Scholar 

  32. C. Leach and J. Seaton: Local variability in PTC thermistor grain boundary structures. Scanning 30, 339 (2008).

    Article  CAS  Google Scholar 

  33. J. Hou, Z. Zhang, W. Press, W. sitte, and G. Dehm: Electrical properties and structure of grain boundaries in n-conducting BaTiO3 ceramics. J. Eur. Ceram. Soc. 31, 763 (2011).

    Article  CAS  Google Scholar 

  34. M.A. Zubair and C. Leach: The effect of SiO2 addition on the development of low-Σ grain boundaries in PTC thermistors. J. Eur. Ceram. Soc. 30, 107 (2010).

    Article  CAS  Google Scholar 

  35. W. Press and W. sitte: Modeling of transport properties of interfacially controlled electroceramics: Application to n-conducting barium titanate. J. Electroceram. 27, 83 (2011).

    Article  Google Scholar 

  36. J. Palm, D. Steinbach, and H. Alexander: Local investigation of the electrical properties of the grain boundaries. Mater. Sci. Eng., B 24, 54 (1994).

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial support from Japan Society for Promotion of Science (JSPS) and the Nippon Sheet Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubair, M.A., Takeda, H., Leach, C. et al. Bulk response and grain boundary microelectrical activity of high TC BaTiO3–(Bi1/2K1/2)TiO3-based positive temperature coefficient of resistance ceramics. Journal of Materials Research 28, 2946–2959 (2013). https://doi.org/10.1557/jmr.2013.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.282

Navigation