Skip to main content
Log in

Precipitation kinetics of M23C6 in T/P92 heat-resistant steel by applying soft-impingement correction

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A kinetics model for the precipitation of M23C6 in high Cr ferritic heat resistant steel during tempering has been developed assuming the site-saturated nucleation, carbon diffusion-controlled growth and soft-impingement. The growth coefficient in this model is temperature-dependent, and the Arrhenius equation is applied to describe the growth coefficient, in which the growth activation energy is nearly equal to the diffusion activation energy of carbon in martensite. The effect of main parameters in this model has been discussed in detail. By this model, the precipitation of M23C6 during tempering can be predicted accurately in the case of 2D, and a good agreement with experimental data in previous work has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
TABLE II.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE III.
TABLE IV.
TABLE V.
FIG. 6.
TABLE VI.
FIG. 7.
FIG. 8.
TABLE VII.

Similar content being viewed by others

References

  1. F. Abe: Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater. 9(1), 013002 (2008).

    Article  Google Scholar 

  2. B. Ning, Q. Shi, Z. Yan, J. Fu, Y. Liu, and L. Bie: Variation of martensite phase transformation mechanism in minor-stressed T91 ferritic steel. J. Nucl. Mater. 393(1), 54 (2009).

    Article  CAS  Google Scholar 

  3. L. Singhal and J. Martin: The nucleation and growth of widmannstätten m23c6 precipitation in an austenitic stainless steel. Acta Metall. 16(9), 1159 (1968).

    Article  CAS  Google Scholar 

  4. M. Taneike, K. Sawada, and F. Abe: Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall. Mater. Trans. A 35(4), 1255 (2004).

    Article  Google Scholar 

  5. F. Abe, M. Taneike, and K. Sawada: Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int. J. Press. Vessels Pip. 84(1), 3 (2007).

    Article  CAS  Google Scholar 

  6. F. Liu, F. Sommer, and E. Mittemeijer: An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39(5), 1621 (2004).

    Article  CAS  Google Scholar 

  7. F. Liu, H. Nitsche, F. Sommer, and E. Mittemeijer: Nucleation, growth and impingement modes deduced from isothermally and isochronally conducted phase transformations: Calorimetric analysis of the crystallization of amorphous Zr50Al10Ni40. Acta Mater. 58(19), 6542 (2010).

    Article  CAS  Google Scholar 

  8. G. Ruitenberg, E. Woldt, and A. Petford-Long: Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim. Acta 378(1), 97 (2001).

    Article  CAS  Google Scholar 

  9. M. Starink and A.M. Zahra: β′ and β precipitation in an Al–Mg alloy studied by DSC and TEM. Acta Mater. 46(10), 3381 (1998).

    Article  CAS  Google Scholar 

  10. J. Robson and H. Bhadeshia: Kinetics of precipitation in power plant steels. Calphad 20(4), 447 (1996).

    Article  CAS  Google Scholar 

  11. J. Robson and H. Bhadeshia: Modelling precipitation sequences in power plant steels part 1–kinetic theory. Mater. Sci. Technol. 13(8), 631 (1997).

    Article  CAS  Google Scholar 

  12. F. Liu, F. Sommer, C. Bos, and E. Mittemeijer: Analysis of solid-state phase transformation kinetics: Models and recipes. Int. Mater. Rev. 52(4), 193 (2007).

    Article  CAS  Google Scholar 

  13. S. Offerman, N. Van Dijk, J. Sietsma, E. Lauridsen, L. Margulies, S. Grigull, H. Poulsen, and S. Van Der Zwaag: Solid-state phase transformations involving solute partitioning: Modeling and measuring on the level of individual grains. Acta Mater. 52(16), 4757 (2004).

    Article  CAS  Google Scholar 

  14. H. Chen and S. van der Zwaag: Modeling of soft impingement effect during solid-state partitioning phase transformations in binary alloys. J. Mater. Sci. 46(5), 1328 (2011).

    Article  CAS  Google Scholar 

  15. J. Gilmour, G. Purdy, and J. Kirkaldy: Thermodynamics controlling the proeutectoid ferrite transformations in Fe-C-Mn alloys. Metall. Mater. Trans. B 3(6), 1455 (1972).

    Article  CAS  Google Scholar 

  16. J. Gilmour, G. Purdy, and J. Kirkaldy: Partition of manganese during the proeutectoid ferrite transformation in steel. Metall. Mater. Trans. B 3(12), 3213 (1972).

    Article  CAS  Google Scholar 

  17. H.K.D.H. Bhadeshia: Diffusional formation of ferrite in iron and its alloys. Prog. Mater. Sci. 29, 321 (1986).

    Article  Google Scholar 

  18. C.G. Andres, C. Capdevila, F. Caballero, and H. Bhadeshia: Modelling of isothermal ferrite formation using an analytical treatment of soft impingement in 0.37 C-1.45 Mn-0.11 V microalloyed steel. Scr. Mater. 39(7), 853 (1998).

    Article  Google Scholar 

  19. G. Yu, Y. Lai, and W. Zhang: Kinetics of transformation with nucleation and growth mechanism: Diffusion-controlled reactions. J. Appl. Phys. 82(9), 4270 (1997).

    Article  CAS  Google Scholar 

  20. K. Fan, F. Liu, X. Liu, Y. Zhang, G. Yang, and Y. Zhou: Modeling of isothermal solid-state precipitation using an analytical treatment of soft impingement. Acta Mater. 56(16), 4309 (2008).

    Article  CAS  Google Scholar 

  21. C. Zener: Theory of growth of spherical precipitates from solid solution. J. Appl. Phys. 20(10), 950 (1949).

    Article  CAS  Google Scholar 

  22. E. Mittemeijer: Analysis of the kinetics of phase transformations. J. Mater. Sci. 27(15), 3977 (1992).

    Article  CAS  Google Scholar 

  23. M. Avrami: Kinetics of phase change. I general theory. J. Chem. Phys. 7, 1103 (1939).

    Article  CAS  Google Scholar 

  24. M. Avrami: Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).

    Article  CAS  Google Scholar 

  25. M. Avrami: Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9, 177 (1941).

    Article  CAS  Google Scholar 

  26. H. Chen and S. van der Zwaag: Indirect evidence for the existence of the Mn partitioning spike during the austenite to ferrite transformation. Philos. Mag. Lett. 92(2), 86 (2012).

    Article  CAS  Google Scholar 

  27. H. Chen, B. Appolaire, and S. van der Zwaag: Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling. Acta Mater. 59(17), 6751 (2011).

    Article  CAS  Google Scholar 

  28. H. Chen and S. van der Zwaag: Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages. Acta Mater. 61(4), 1338 (2012).

    Article  Google Scholar 

  29. C. Wert and C. Zener: Interference of growing spherical precipitate particles. J. Appl. Phys. 21(1), 5 (1950).

    Article  CAS  Google Scholar 

  30. C.J. Smithells: Metals Reference Book, 6th ed. edited by E.A. Brandes (Butterworths, London, 1983). p. 15.

  31. N. Chester and H. Bhadeshia: Mathematical modelling of bainite transformation kinetics. Le Journal de Physique IV 7(C5), 5 (1997).

    Google Scholar 

  32. F. Abe, T. Horiuchi, M. Taneike, and K. Sawada: Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Mater. Sci. Eng., A 378(1), 299 (2004).

    Article  Google Scholar 

  33. J. Robson and H. Bhadeshia: Modelling precipitation sequences in powerplant steels part 2–application of kinetic theory. Mater. Sci. Technol. 13(8), 640 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China, Shanghai Baosteel Group Company (Grant No. 50834011) and the National Natural Science Foundation of China (Grant Nos. 51104107 and No. 51204121) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Zhang, D., Liu, Y. et al. Precipitation kinetics of M23C6 in T/P92 heat-resistant steel by applying soft-impingement correction. Journal of Materials Research 28, 1529–1537 (2013). https://doi.org/10.1557/jmr.2013.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.116

Navigation