Skip to main content
Log in

Indentation method for measuring the viscoelastic kernel function of nonlinear viscoelastic soft materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The indentation method of nonlinear viscoelastic materials is investigated through combined numerical and experimental efforts to reveal the correlation between the viscoelastic kernel function and the indentation responses. It is shown that the viscoelastic kernel function of a nonlinear viscoelastic solid with viscous response characterized by a linear rate constitutive equation scales with the normalized relaxation load in an indentation relaxation test. This scaling relation does not depend on the geometry of the indented solid and the profile of the indenter. Therefore, it may serve as a fundamental relation for characterizing the viscoelastic properties of some biological soft tissues and artificial soft materials with regular/irregular surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.C. Fung: Biomechanics: Mechanical Properties of Living Tissues (Springer, New York, NY, 1993).

    Book  Google Scholar 

  2. L.A. Taber: Nonlinear Theory of Elasticity: Applications in Biomechanics (World Scientific Publishing, River Edge, NJ, 2004).

    Book  Google Scholar 

  3. I. Levental, P.C. Georges, and P.A. Janmey: Soft biological materials and their impact on cell function. Soft Matter 3, 299 (2007).

    Article  CAS  Google Scholar 

  4. M.R. DiSilvestro and J.K.F. Suh: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519 (2001).

    Article  CAS  Google Scholar 

  5. R.K. Korhonen, M.S. Laasanen, J. Töyräs, R. Lappalainen, H.J. Helminen, and J.S. Jurvelin: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373 (2003).

    Article  Google Scholar 

  6. A.J. Crosby and J.J. Macmanus: Blowing bubbles to study living material. Phys. Today 64, 62 (2011).

    Article  Google Scholar 

  7. S. Shimizu, T. Yanagimoto, and M. Sakai: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).

    Article  CAS  Google Scholar 

  8. H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).

    Article  Google Scholar 

  9. A. Fischer-Cripps: Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 19, 2981 (2004).

    Article  CAS  Google Scholar 

  10. A.H.W. Ngan and B. Tang: Response of power-law-viscoelastic and time-dependent materials to rate jumps. J. Mater. Res. 24, 653 (2009).

    Article  Google Scholar 

  11. B. Tang and A.H.W. Ngan: A rate-jump method for characterization of soft tissues using nanoindentation techniques. Soft Matter 8, 5974 (2012).

    Article  CAS  Google Scholar 

  12. M.L. Oyen and R.F. Cook: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18, 139 (2003).

    Article  CAS  Google Scholar 

  13. M.L. Oyen: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 (2005).

    Article  CAS  Google Scholar 

  14. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R. 44, 91 (2004).

    Article  Google Scholar 

  15. E. Herbert, W. Oliver, A. Lumsdaine, and G. Pharr: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24, 626 (2009).

    Article  CAS  Google Scholar 

  16. Y.P. Cao, D. Ma, and D. Raabe: The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomater. 5, 240 (2009).

    Article  Google Scholar 

  17. Y.T. Cheng and F.Q. Yang: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24, 3013 (2009).

    Article  CAS  Google Scholar 

  18. M. Galli and M.L. Oyen: Fast identification of poroelastic parameters from indentation tests. CMES: Comput. Model. Eng. Sci. 48, 241(2009).

    Google Scholar 

  19. Z.I. Kalcioglu, R. Mahmoodian, Y.H. Hu, Z.G. Suo, and K.J. Van Vliet: From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8, 3393 (2012).

    Article  CAS  Google Scholar 

  20. B. Li, Y.P. Cao, X.Q. Feng, and H. Gao: Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8, 5728 (2012).

    Article  CAS  Google Scholar 

  21. S.M. Goh, M.N. Charalambides, and J.G. Williams: Characterisation of non-linear viscoelastic foods by the indentation technique. Rheol. Acta 44, 47(2004).

    Article  CAS  Google Scholar 

  22. G. Rauchs, J. Bardon, and D. Georges: Identification of the material parameters of a viscous hyperelastic constitutive law from spherical indentation tests of rubber and validation by tensile tests. Mech. Mater. 42, 961–973 (2010).

    Article  Google Scholar 

  23. Y.P. Cao, X.Y. Ji, and X.Q. Feng: Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation. Philos. Mag. 90, 1639 (2010).

    Article  CAS  Google Scholar 

  24. ABAQUS: ABAQUS Theoretical Manual, Version 6.9 (2009).

    Google Scholar 

  25. ANSYS: ANSYS Theory Reference, Ansys, Version 10 (2010).

    Google Scholar 

  26. J.C. Simo: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Meth. Appl. Mech. Eng. 60, 153 (1987).

    Article  Google Scholar 

  27. A. Pipkin and T. Rogers: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59 (1968).

    Article  Google Scholar 

  28. G.A. Holzapfel: On large strain viscoelasticity: Continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods Eng. 39, 3903 (1996).

    Article  Google Scholar 

  29. S. Reese and S. Govindjee: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455 (1998).

    Article  Google Scholar 

  30. A. Lion and C. Kardelky: The Payne effect in finite viscoelasticity: Constitutive modelling based on fractional derivatives and intrinsic time scales. Int. J. Plasticity 20, 1313 (2004).

    Article  CAS  Google Scholar 

  31. V.P.W. Shim, L.M. Yang, C.T. Lim, and P.H. Law: A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber. J. Appl. Polym. Sci. 92, 523 (2004).

    Article  CAS  Google Scholar 

  32. E.M. Arruda and M.C. Boyce: A three-dimensional model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389 (1993).

    Article  CAS  Google Scholar 

  33. Y.P. Cao and J. Lu: Depth-sensing instrumented indentation with dual indenters: Stability analysis and corresponding regularization schemes. Acta Mater. 52, 1143 (2004).

    Article  CAS  Google Scholar 

  34. J.F. Zang, X.H. Zhao, Y.P. Cao, and J.W. Hutchinson: Localized ridge wrinkling of stiff films on compliant substrates. J. Mech. Phys. Solids 60, 1265 (2012).

    Article  CAS  Google Scholar 

  35. W.N. Findley, J.S. Lai, and K. Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials (North-Holland Publishing Company, New York, 1976).

    Google Scholar 

  36. S.E. Duenwald, R. Vanderby, and R.S. Lakes: Stress relaxation and recovery in tendon and ligament: Experiment and modeling. Biorheology 47, 1 (2010).

    Article  Google Scholar 

  37. J. Ciambella, A. Paolone, and S. Vidoli: A comparison of nonlinear integral-based viscoelastic model through compression tests on filled rubber. Mech. Mater. 42, 932 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

Supports from the National Natural Science Foundation of China (Grant Nos. 10972112 and 11210401062), Tsinghua University (Grant Nos. 2012Z02103 and 20121087991), and 973 Program of MOST (Grant No. 2010CB631005) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ping Cao.

Appendix

Appendix

In the uniaxial tension test of a homogeneous solid, the motion is described by:

$${x_1} = {{\lambda }}\left( t \right){X_1},{x_2} = {J^{1/2}}{{\lambda }}{\left( t \right)^{ - 1/2}}{X_2},{x_3} = {J^{1/2}}{{\lambda }}{\left( t \right)^{ - 1/2}}{X_3}\quad,$$
((A1))

where xi (i = 1, 2, 3) and XI (I = 1, 2, 3) represent the coordinates in the spatial and reference configuration, respectively, λ(t) is the stretch ratio in the direction of the uniaxial tension, and J is the determinant of the deformation gradient. The deformation gradient has the diagonal form:

$$F\left( t \right) = {\text{Diag}}\left[ {{{\lambda }}\left( t \right),{J^{1/2}}{{\lambda }}{{\left( t \right)}^{ - 1/2}},{J^{1/2}}{{\lambda }}{{\left( t \right)}^{ - 1/2}}} \right]\quad.$$
((A2))

We consider a tensile relaxation test, where the stretch ratio is described via a Heaviside step function:

$${{\lambda }}\left( t \right) = \left\{ { {{{{\lambda }}_0}\left( {t \geqslant 0} \right)} \\ {1\left( {t < 0} \right)} \\ \quad.} \right.$$
((A3))

The instantaneous Kirchhoff stress τ0(t) is the function of the material parameters, the stretch ratio, and the determinant of the deformation gradient J. When t ≥ 0, the stretch ratio λ(t) in a tensile relaxation test and J are constant, and hence, the Kirchhoff stress τ0(t) also does not change, which is written as τ0 here. In this case, it is obvious that \({{{\bar F}}_t}\left( {t - t'} \right)\) is a second-order unit tensor. Therefore, from Eq. (9), we have:

$${{{\tau }}^D}\left( t \right) = {{\tau }}_0^D + {{\tau }}_0^D\int\limits_0^t {\frac{{\partial g}}{{\partial t'}}dt'} \quad,$$
((A4))
$${{{\tau }}^H}\left( t \right) = {{\tau }}_0^H + {{\tau }}_0^H\int\limits_0^t {\frac{{\partial g}}{{\partial t'}}dt'} \quad.$$
((A5))

Further, the Kirchhoff stress τ(t) is:

$${{\tau }}\left( t \right) = {\tau ^H}\left( t \right){ + ^H}\left( t \right) = {{{\tau }}_0}\left( {1 + \int\limits_0^t {\frac{{\partial g}}{{\partial t'}}dt'} } \right)\quad.$$
((A6))

Recall that g(0) = 1, Eq. (A6) can be further reduced to:

$${{\tau }}\left( t \right) = {\tau _0}g\left( t \right)\quad.$$
((A7))

In the current configuration, the Cauchy stress can be expressed as:

$$\sigma \left( t \right) = J{{\tau }}\left( t \right)\quad.$$
((A8))

Then, the uniaxial tensile load may be written as:

$${P_u}\left( t \right) = {{{\sigma }}_{11}}\left( t \right)A\left( 0 \right)/{{{\lambda }}_0}\quad,$$
((A9))

where A(0) represents the area of the initial cross section. σ11 is the Cauchy stress in the tensile direction. Equations (A7)(A9) give:

$${P_u}\left( t \right) = J{{{\tau }}_{{\text{011}}}}g\left( t \right)A\left( 0 \right)/{{{\lambda }}_0}\quad,$$
((A10))

where τ011 is the instantaneous Kirchhoff stress in the tensile direction. It is of notice that g(0) = 1 and Pu(0) = Jτ011A(0)/λ0, from Eq. (A10), we get the following correlation between the viscoelastic kernel function g(t) and the relaxation load:

$$g\left( t \right) = {\bar P_u}\left( t \right) = \frac{{{P_u}\left( t \right)}}{{{P_u}\left( 0 \right)}}\quad,$$
((A11))

where Pu(0) is the tension load at the starting point of relaxation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, YP., Zhang, MG. & Feng, XQ. Indentation method for measuring the viscoelastic kernel function of nonlinear viscoelastic soft materials. Journal of Materials Research 28, 806–816 (2013). https://doi.org/10.1557/jmr.2012.431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.431

Navigation