Skip to main content
Log in

Confined crystallization in polymer nanolayered films: A review

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent advances utilizing forced assembly multilayer coextrusion have led to the development of a new approach to study the structure–property relationships of confined polymer crystallization. Confinement of crystalline polymer materials in layer thicknesses ranging from hundreds to tens of nanometers thick, resulted in multilayer films possessing enhanced gas barrier properties. The enhanced gas barrier has been attributed to nanolayer confinement of the crystalline polymer resulting in a highly ordered intralayer lamellae orientation extending over micron or larger scale areas. Research into the confined crystallization mechanism of the multilayered polymer films has resulted in several material case studies as well as an understanding of the chemical and thermodynamic parameters that control the degree and rate of the confinement in multilayer polymer systems. This review highlights our recent studies on the confinement of poly(ethylene oxide), poly(ε-caprolactone), polypropylene, and poly(vinylidene fluoride) polymers in multilayered films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.
FIG. 18.
FIG. 19.
FIG. 20.
FIG. 21.
FIG. 22.
FIG. 23.
FIG. 24.
FIG. 25.

Similar content being viewed by others

References

  1. L. Hongwei and W. T. S. Huck: Polymers in nanotechnology. Curr. Opin. Solid State Mater. Sci. 6 (1), 3 (2002).

    Google Scholar 

  2. I. Szleifer and R. Yerushalmi-Rozen: Polymers and carbon nanotubes—Dimensionality, interactions and nanotechnology. Polymer 4 (6), 7803 (2005).

    Google Scholar 

  3. A. Samad, I. Alam, and K. Saxena: Dendrimers: A class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Curr. Pharm. Des. 15 (25), 2958 (2009).

    CAS  Google Scholar 

  4. A.J. Ryan: Nanotechnology: Squaring up with polymers. Nature 456 (7220), 334 (2008).

    CAS  Google Scholar 

  5. I. Mcculloch: Thin films: Rolling out organic electronics. Nat. Mater. 4, 583 (2005).

    CAS  Google Scholar 

  6. G. Beadie, J.S. Shirk, A. Rosenberg, P.A. Lane, E. Fleet, A.R. Kamdar, Y. Jin, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer: Optical properties of a bio-inspired gradient refractive index polymer lens. Opt. Express 16, 11540 (2008).

    CAS  Google Scholar 

  7. G. Reiter, I. Botiz, L. Graveleau, N. Grozev, K. Albrecht, A. Mourran, and M. Moeller: Morphologies of polymer crystals in thin films. Lect. Notes Phys 714, 179 (2007).

    CAS  Google Scholar 

  8. F.J. Padden Jr. and H.D. Keith: Crystallization in thin films of isotactic polypropylene. J. Appl. Phys. 37, 4013 (1966).

    CAS  Google Scholar 

  9. K.C. Douzinas and R.E. Cohen: Chain folding in ethylene-butylene-ethylethylene semicrystalline diblock copolymers. Macromolecules 25, 5030 (1992).

    CAS  Google Scholar 

  10. I.W. Hamley, J.P.A. Fairclough, A.J. Ryan, F.S. Bates, and E. Towns-Andrews: Crystallization of nanoscale-confined diblock copolymer chains. Polymer 37, 4425 (1996).

    CAS  Google Scholar 

  11. Z. Bartczak, A.S. Argon, R.E. Cohen, and T. Kowalewski: The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer 40, 2367 (1999).

    CAS  Google Scholar 

  12. O. Mellbring, S.K. Oiseth, A. Krozer, J. Lausmaa, and T. Hjertberg: Spin coating and characterization of thin high-density polyethylene films. Macromolecules 34, 7496 (2001).

    CAS  Google Scholar 

  13. O.K. Muratoglu, A.S. Argon, and R.E. Cohen: Crystalline morphology of polyamide-6 near planar surfaces. Polymer 36, 2143 (1995).

    CAS  Google Scholar 

  14. U. Mukai, R.E. Cohen, A. Bellare, and R.J. Albalak: The influence of melt processing on the spatial organization of polymer chains in a crystallizable diblock copolymer of nylon 6 and PDMS. J. Appl. Polym. Sci. 70, 1985 (1998).

    CAS  Google Scholar 

  15. M. Tsuji, F.A. Novillo, M. Fujita, S. Murakami, and S. Kohjiya: Melt-crystallized poly(ethylene 2,6-naphthalate) thin films studied by transmission electron microscopy. J. Mater. Res. 14, 251 (1999).

    CAS  Google Scholar 

  16. Y. Zhang, S. Mukoyama, Y. Hu, C. Yan, Y. Ozaki, and I. Takahashi: Thermal behavior and molecular orientation of poly(ethylene 2,6-naphthalate) in thin films. Macromolecules 40, 4009 (2007).

    CAS  Google Scholar 

  17. M. Durell, J.E. MacDonald, D. Trolley, A. Wehrum, P.C. Jukes, R.A.L. Jones, C.J. Walker, and S. Brown: The role of surface-induced ordering in the crystallisation of PET films. Europhys. Lett. 58, 844 (2002).

    CAS  Google Scholar 

  18. L. Zhu, S.Z.D. Cheng, B.H. Calhoun, Q. Ge, R.P. Quirk, E.L. Thomas, B.S. Hsiao, F.J. Yeh, and B. Lotz: Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline−amorphous diblock copolymer. J. Am. Chem. Soc. 122, 5957 (2000).

    CAS  Google Scholar 

  19. H. Schonherr and C.W. Frank: Ultrathin films of poly(ethylene oxides) on oxidized silicon. 2. In situ study of crystallization and melting by hot stage AFM. Macromolecules 36, 1199 (2003).

    Google Scholar 

  20. S.J. Sutton, K. Izumi, H. Miyaji, Y. Miyamoto, and S. Miyashita: The morphology of isotactic polystyrene crystals grown in thin films: The effect of substrate material. J. Mater. Sci. 32, 5621 (1997).

    CAS  Google Scholar 

  21. Z. Bu, M.B. Welch, R.M. Ho, W. Zhou, I. Jangchud, R.K. Eby, S.Z.D. Cheng, E.T. Hsieh, T.W. Johnson, and R.G. Geerts: Crystallization, melting, and morphology of syndiotactic polypropylene fractions. 3. Lamellar single crystals and chain folding. Macromolecules 29, 6575 (1996).

    CAS  Google Scholar 

  22. H. Abe, Y. Kikkawa, T. Iwata, H. Aoki, T. Akehata, and Y. Doi: Microscopic visualization on crystalline morphologies of thin films for poly[(R)-3-hydroxybutyric acid] and its copolymer. Polymer 41, 867 (2000).

    CAS  Google Scholar 

  23. V.H. Mareau and R.E. Prud’homme: In-situ hot stage atomic force microscopy study of poly(ε-caprolactone) crystal growth in ultrathin films. Macromolecules 38, 398 (2005).

    CAS  Google Scholar 

  24. Y.S. Sun, T.M. Chung, Y.J. Li, R.M. Ho, B.T. Ko, U.S. Jeng, and B. Lotz: Crystalline polymers in nanoscale 1D spatial confinement. Macromolecules 39, 5782 (2006).

    CAS  Google Scholar 

  25. R.M. Ho, F.H. Lin, C.C. Tsai, C.C. Lin, B.T. Ko, B.S. Hsiao, and I. Sics: Crystallization-induced undulated morphology in polystyrene-b-poly(l-lactide) block copolymer. Macromolecules 37, 5985 (2004).

    CAS  Google Scholar 

  26. Y. Wang, C.M. Chan, K.M. Ng, and L. Li: What controls the lamellar orientation at the surface of polymer films during crystallization? Macromolecules 41, 2548 (2008).

    CAS  Google Scholar 

  27. C.W. Frank, V. Rao, M.M. Despotopoulou, R.F.W. Pease, W.D. Hinsberg, R.D. Miller, and J.F. Rabolt: Structure in thin and ultrathin spin-cast polymer films. Science 273, 912 (1996).

    CAS  Google Scholar 

  28. Y. Li and A. Kaito: Crystal orientation behavior of a poly(vinylidene fluoride)/nylon 11 blend. Macromol. Rapid Commun. 24, 255 (2003).

    Google Scholar 

  29. Z. Hu, G. Baralia, V. Bayot, J.F. Gohy, and A.M. Jonas: Nanoscale control of polymer crystallization by nanoimprint lithography. Nano Lett. 5, 1738 (2005).

    CAS  Google Scholar 

  30. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, and J.R. Dutcher: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996).

    CAS  Google Scholar 

  31. Z.R. Chen, J.A. Kornfield, S.D. Smith, J.T. Grothaus, and M.M. Satkowski: Pathways to macroscale order in nanostructured block copolymers. Science 277, 1248 (1997).

    CAS  Google Scholar 

  32. M. Ponting, A. Hiltner, and E. Baer: Polymer nanostructures by forced assembly: Process, structure, and properties. Macromol. Symp. 294-295, 19 (2010).

    Google Scholar 

  33. H. Wang, J.K. Keum, A. Hiltner, E. Baer, B. Freeman, A. Rozanski, and A. Galeski: Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 323, 757 (2009).

    CAS  Google Scholar 

  34. M. Ponting, Y. Lin, J.K. Keum, A. Hiltner, and E. Baer: Effect of substrate on the isothermal crystallization kinetics of confined poly(ε-caprolactone) nanolayers. Macromolecules 43, 8619 (2010).

    CAS  Google Scholar 

  35. H. Wang, J.K. Keum, A. Hiltner, E. Baer, B. Freeman, A. Rozanski, and A. Galeski: Supporting information for confined crystallization of polyethylene oxide in nanolayer assemblies. Science 323, 757 (2009).

    CAS  Google Scholar 

  36. H. Wang, J.K. Keum, A. Hiltner, and E. Baer: Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability. Macromolecules 42, 7055 (2009).

    CAS  Google Scholar 

  37. H. Tadokoro, Y. Chatani, T. Yoshihara, S. Tahara, and S. Murahashi: Structural studies on polyethers, [-(CH2)m-O-]n. II. Molecular structure of poly(ethylene oxide). Makromol. Chem. 73, 109 (1964).

    CAS  Google Scholar 

  38. T. Iwata and Y. Doi: Morphology and enzymatic degradation of poly(ε-caprolactone) single crystals: Does a polymer single crystal consist of micro-crystals? Polym. Int. 51, 852 (2002).

    CAS  Google Scholar 

  39. H. Wang, J.K. Keum, A. Hiltner, and E. Baer: Crystallization kinetics of poly(ethylene oxide) in confined nanolayers. Macromolecules 43, 3359 (2010).

    CAS  Google Scholar 

  40. Y. Takahashi and H. Tadokoro: Structural studies of polyethers, (-(CH2)m-O-) n. X. Crystal structure of poly(ethylene oxide). Macromolecules 6, 672 (1973).

    CAS  Google Scholar 

  41. D.H. Weinkauf and D.R. Paul: The effects of structural order on barrier properties, in Barrier Polymers and Structures, edited by W. J. Koros (American Chemcial Society, Washington, DC 1990), pp 60–91.

    Google Scholar 

  42. E.L. Cussler, S.E. Hughes, W.J. Ward III, and R. Aris: Barrier membranes. J. Membr. Sci. 38, 161 (1988).

    CAS  Google Scholar 

  43. M.V. Massa and K. Dalnoki-Veress: Homogeneous crystallization of poly(ethylene oxide) confined to droplets: The dependence of the crystal nucleation rate on length scale and temperature. Phys. Rev. Lett. 92, 255509 (2004).

    Google Scholar 

  44. J.A. Koutsky, A.G. Walton, and E. Baer: Nucleation of polymer droplets. J. Appl. Phys. 38, 1832 (1967).

    CAS  Google Scholar 

  45. A.J. Muller, V. Balsamo, M.L. Arnal, T. Jakob, H. Schmalz, and V. Abetz: Homogeneous nucleation and fractionated crystallization in block copolymers. Macromolecules 35, 3048 (2002).

    Google Scholar 

  46. H. Wang, J.K. Keum, A. Hiltner, and E. Baer: Impact of nanoscale confinement on crystal orientation of poly(ethylene oxide). Macromol. Rapid Commun. 31, 356 (2010).

    CAS  Google Scholar 

  47. P.H. Hermans: Contribution to the Physics of Cellulose Fibres (Elsevier, Amsterdam, 1946), p 195.

    Google Scholar 

  48. H. Wang, J.K. Keum, A. Hiltner, and E. Baer: Supporting information for impact of nanoscale confinement on crystal orientation of poly(ethylene oxide). Macromol. Rapid Commun. 31, 356 (2010).

    CAS  Google Scholar 

  49. M-S. Hsiao, J.X. Zheng, S. Leng, R.M. Van Horn, R.P. Quirk, E.L. Thomas, H-L. Chen, B.S. Hsiao, L. Rong, B. Lotz, and S.Z.D. Cheng: Crystal orientation change and its origin in one-dimensional nano-confinement constructed by polystyrene-block-poly(ethylene oxide) single crystal mats. Macromolecules 41, 8114 (2008).

    CAS  Google Scholar 

  50. P. Huang, L. Zhu, Y. Guo, Q. Ge, A.J. Jing, W.Y. Chen, R.P. Quirk, S.Z.D. Cheng, E.L. Thomas, B. Lotz, B.S. Hsiao, C.A. Avila-Orta, and I. Sics: Confinement size effect on crystal orientation changes of poly(ethylene oxide) blocks in poly(ethylene oxide)-b-polystyrene diblock copolymers. Macromolecules 37, 3689 (2004).

    CAS  Google Scholar 

  51. B. Wunderlich: Macromolecular Physics, Vol. 2 (Academic Press: New York, 1976).

  52. S. Vyazovkin, J. Stone, and N. Sbirrazzuoli: Hoffman-Lauritzen parameters for non-isothermal crystallization of poly(ethylene terephthalate) and poly(ethylene oxide) melts. J. Therm. Anal. Calorim. 80, 177 (2005).

    CAS  Google Scholar 

  53. J.M. Escleine, B. Monasse, E. Wey, and J.M. Haudin: Influence of specimen thickness on isothermal crystallization kinetics. A theoretical analysis. Colloid Polym. Sci. 262, 366 (1984).

    CAS  Google Scholar 

  54. U.W. Gedde: Polymer Physics, 1st ed. (Kluwer Academic Publishers. Dordrecht, 1995).

    Google Scholar 

  55. P. Damman, S. Coppee, V.M. Geskin, and R. Lazzaroni: What is the mechanism of oriented crystal growth on rubbed polymer substrates? Topography vs epitaxy. J. Am. Chem. Soc. 124, 15166 (2002).

    CAS  Google Scholar 

  56. J.L. Carvalho and K. Dalnoki-Veress: Homogeneous bulk, surface, and edge nucleation in crystalline nanodroplets. Phys. Rev. Lett. 105, 237801 (2010).

    Google Scholar 

  57. A.M. Chatterjee and F.P. Price: Heterogeneous nucleation of crystallization of high polymers from the melt. I. Substrate-induced morphologies. J. Polym. Sci. Polym. Phys 13, 2368 (1975).

    Google Scholar 

  58. A.M. Chatterjee and F.P. Price: Heterogeneous nucleation of crystallization of high polymers from the melt. II. Aspects of transcrystallinity and nucleation density. J. Polym. Sci. Polym. Phys 13, 2385 (1975).

    CAS  Google Scholar 

  59. A.M. Chatterjee and F.P. Price: Heterogeneous nucleation of crystallization of high polymers from the melt. III. Nucleation kinetics and interfacial energies. J. Polym. Sci. Polym. Phys 13, 2391 (1975).

    CAS  Google Scholar 

  60. N. Artzi, B.B. Khatua, R. Tchoudakov, M. Narkis, A. Berner, A. Siegmann, and J.M. Lagaron: Physical and chemical interactions in melt mixed nylon-6/EVOH blends. J. Macromol. Sci. 43, 605 (2004).

    Google Scholar 

  61. Y.W. Cheung, R.S. Stein, B. Chu, and G. Wu: Evolution of crystalline structures of poly(.epsilon.-caprolactone)/polycarbonate blends. 1. Isothermal crystallization kinetics as probed by synchrotron small-angle x-ray scattering. Macromolecules 27, 3589 (1994).

    CAS  Google Scholar 

  62. D. Keroack, Z. Yue, and R.E. Prud’homme: Molecular orientation in crystalline miscible blends. Polymer 40, 243 (1999).

    CAS  Google Scholar 

  63. M.L. Di Lorenzo, P.L. Pietra, M.E. Errico, M.C. Righetti, and M. Angiuli: Poly(butylene terephthalate)/poly(ε-caprolactone) blends: Miscibility and thermal and mechanical properties. Polym. Eng. Sci. 47, 323 (2007).

    Google Scholar 

  64. R.Y.F. Liu, Y. Jin, A. Hiltner, and E. Baer: Probing nanoscale polymer interactions by forced-assembly. Macromol. Rapid Commun. 24, 943 (2003).

    CAS  Google Scholar 

  65. R.Y.F. Liu, T.E. Bernal-Lara, A. Hiltner, and E. Baer: Interphase materials by force-assembly of glassy polymers. Macromolecules 37, 6972 (2004).

    CAS  Google Scholar 

  66. R.Y.F. Liu, T.E. Bernal-Lara, A. Hiltner, and E. Baer: Polymer interphase materials by forced assembly. Macromolecules 38, 4819 (2005).

    CAS  Google Scholar 

  67. R.Y.F. Liu, A.P. Ranade, H.P. Wang, T.E. Bernal-Lara, A. Hiltner, and E. Baer: Forced assembly of polymer nanolayers thinner than the interphase. Macromolecules 38, 10721 (2005).

    CAS  Google Scholar 

  68. T. Schman, S. Nazarenko, E.V. Stepanov, S.N. Magonov, A. Hiltner, and E. Baer: Solid state structure and melting behavior of interdiffused polyethylenes in microlayers. Polymer 40, 7373 (1999).

    Google Scholar 

  69. J. Brandrup and E.H. Immergut: Polymer Handbook, 3rd ed. (John Wiley & Sons, 1989), p. 527.

    Google Scholar 

  70. H.J. Karam: Polymer Compatibility and Incompatibility: Principles and Practices, edited by K. Solc (MMI Press, Chur, 1982), pp. 93–106.

    Google Scholar 

  71. M. Ponting, J. Keum, B. Freeman, A. Hiltner, and E. Baer: Substrate effects on the confined crystallization of polycaprolactone in coextruded nanolayered films, in ANTEC 2011 Conference Proceedings, May 1–5, Boston, MA, 2011, p. 2328.

    Google Scholar 

  72. Y. Jin, M. Rogunova, A. Hiltner, E. Baer, R. Nowacki, A. Galeski, and E. Piorkowska: Structure of polypropylene crystallized in confined nanolayers. J. Polym. Sci., Part B: Polym. Phys. 42, 3380 (2004).

    CAS  Google Scholar 

  73. T.E. Bernal-Lara, R.Y.F. Liu, A. Hiltner, and E. Baer: Structure and thermal stability of polyethylene nanolayers. Polymer 46, 3043 (2005).

    CAS  Google Scholar 

  74. T.E. Bernal-Lara, R. Masirek, A. Hiltner, E. Baer, E. Piorkowska, and A. Galeski: Morphology studies of multilayered HDPE/PS systems. J. Appl. Polym. Sci. 99, 597 (2006).

    CAS  Google Scholar 

  75. K. Mezghani, R.A. Campbell, and P.J. Phillips: Lamellar thickening and the equilibrium melting point of polypropylene. Macromolecules 27, 997 (1999).

    Google Scholar 

  76. Z. Bartczak, A. Galeski, and N.P. Krasnikova: Primary nucleation and spherulite growth rate in isotactic polypropylene-polystyrene blends. Polymer (Guildf.) 28, 1627 (1987).

    CAS  Google Scholar 

  77. R. Nowacki, J. Kolasinska, and E. Piorkowska: Cavitation during isothermal crystallization of isotactic polypropylene. J. Appl. Polym. Sci. 79, 2439 (2001).

    CAS  Google Scholar 

  78. A. Galeski and E. Piorkowska: Localized volume deficiencies as an effect of spherulite growth. I. The two-dimensional case. J. Polym. Sci., Polym. Phys. Ed. 21, 1299 (1983).

    CAS  Google Scholar 

  79. D.R. Norton and A. Keller: The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 26, 704 (1985).

    CAS  Google Scholar 

  80. B. Lotz, J.C. Wittmann, and A.J. Lovinger: Structure and morphology of poly(propylenes): A molecular analysis. Polymer) 37, 4979 (1996).

    CAS  Google Scholar 

  81. D.S. Langhe, A. Hiltner, and E. Baer: Melt crystallization of syndiotactic polypropylene in nanolayer confinement impacting structure. Polymer 52, 5879 (2011).

    CAS  Google Scholar 

  82. J. Harasawa, H. Uehara, T. Yamanobe, and M. Terano: Morphology of drawn syndiotactic polypropylene films. J. Mol. Struct. 610, 133 (2002).

    CAS  Google Scholar 

  83. A. Lovinger, B. Lotz, D.D. Davis, and F.J. Padden Jr.: Structure and defects in fully syndiotactic polypropylene. Macromolecules 26, 3494 (1993).

    CAS  Google Scholar 

  84. A. Lovinger, B. Lotz, D.D. Davis, and M. Schumacher: Morphology and thermal properties of fully syndiotactic polypropylene. Macromolecules 27, 6603 (1994).

    CAS  Google Scholar 

  85. A. Lovinger: Ferroelectric polymers. Science 220, 1115 (1983).

    CAS  Google Scholar 

  86. M. Mackey, A. Hiltner, E. Baer, L. Flandin, M. Wolak, and J. Shirk: Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion. J. Phys. D Appl. Phys. 42, 175304 (2009).

    Google Scholar 

  87. P. Ueberschlag: PVDF piezoelectric polymer. Sensor Review 21, 118 (2001).

    Google Scholar 

  88. S.W. Choi, S.M. Jo, W.S. Lee, and Y-R. Kim: An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv. Mater. 15, 2027 (2003).

    CAS  Google Scholar 

  89. H.S. Nalwa: Ferroelectric Polymers: Chemistry, Physics and Applications (CRC Press: New York, 1995).

    Google Scholar 

  90. M. Mackey, L. Flandin, A. Hiltner, E. Baer: Confined crystallization of PVDF and PVDF-TFE copolymer in nanolayered films. J. Polym. Sci., Part B: Polym. Phys. 49, 1750 (2011).

    CAS  Google Scholar 

  91. A.J. Lovinger and H.D. Keith: Electron diffraction investigation of a high-temperature form of poly(vinylidene fluoride). Macromolecules 12, 919 (1979).

    CAS  Google Scholar 

  92. L. Mandelkern: Crystallization of Polymers (Cambridge University Press: Cambridge, United Kingdom, 2002).

    Google Scholar 

  93. Y.J. Lin, A. Hiltner, and E. Baer: A new method for achieving nanoscale reinforcement of biaxial oriented polypropylene film. Polymer 51, 4218 (2010).

    CAS  Google Scholar 

  94. Y.J. Lin, A. Hiltner, and E. Baer: Nanolayer enhancement of biaxially oriented polypropylene film for increased gas barrier. Polymer 51, 5807 (2010).

    CAS  Google Scholar 

  95. F.J. Balta-Calleja, F. Ania, I. Puente-Orench, E. Baer, A. Hiltner, T. Bernal, and S.S. Funari: Nanostructure development in multilayered polymer systems as revealed by x-ray scattering methods. Prog. Colloid Polym. Sci. 130, 140 (2005).

    CAS  Google Scholar 

  96. F. Ania, I. Puente-Orench, F.J. Balta-Calleja, D. Khariwala, A. Hiltner, E. Baer, and S.V. Roth: Ultra-small-angle x-ray scattering study of PET/PC nanolayers and comparison to AFM results. Macromol. Chem. Phys. 209, 1367 (2008).

    CAS  Google Scholar 

  97. A. Flores, C. Arribas, F. Fauth, D. Khariwala, A. Hiltner, E. Baer, F. Balta-Calleja, and F. Ania: Finite size effects in multilayered polymer systems: Development of PET lamellae under physical confinement. Polymer 51, 4530 (2010).

    CAS  Google Scholar 

  98. R. Adhikari, V. Seydewitz, K. Loschner, G.H. Michler, A. Hiltner, and E. Baer: Structure and properties of multilayered PET/PC composites. Macromol. Symp. 290, 156 (2010).

    CAS  Google Scholar 

  99. I.P. Orench, F. Ania, E. Baer, A. Hiltner, T. Bernal, and F.J. Balta-Calleja: Basic aspects of microindentation in multilayered poly(ethylene terephthalate)/polycarbonate films. Philos. Mag. 84, 1841 (2004).

    Google Scholar 

  100. C. Lai, R. Ayyer, A. Hiltner, and E. Baer: Effect of confinement on the relaxation behavior of poly(ethylene oxide). Polymer 51, 1820 (2010).

    CAS  Google Scholar 

  101. T.M. Burt, J.K. Keum, A. Hiltner, E. Baer, and L.T.J. Korley: Confinement of elastomeric block copolymers via forced assembly coextrusion. ACS Appl. Mater. Interfaces 3 4804 (2011).

    CAS  Google Scholar 

Download references

Acknowledgment

This research was generously supported by the National Science Foundation through the Center for Layered Polymeric Systems (CLiPS) Science and Technology Center Grant DMR-0423914 and the Office of Naval Research Grant N00014-10-1-0349.

Author information

Authors and Affiliations

Authors

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, J.M., Langhe, D.S., Ponting, M.T. et al. Confined crystallization in polymer nanolayered films: A review. Journal of Materials Research 27, 1326–1350 (2012). https://doi.org/10.1557/jmr.2012.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.17

Navigation