Skip to main content
Log in

Improved structural and electrical properties of thin ZnO:Al films by dc filtered cathodic arc deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Transparent conducting oxide films are usually several 100-nm thick to achieve the required low sheet resistance. In this study, we show that the filtered cathodic arc technique produces high-quality low-cost ZnO:Al material for comparably smaller thicknesses than achieved by magnetron sputtering, making arc deposition a promising choice for applications requiring films less than 100-nm thick. A mean surface roughness less than 1 nm is observed for ZnO:Al films less than 100-nm thick, and 35-nm-thick ZnO:Al films exhibit Hall mobility of 28 cm2/Vs and a low resistivity of 6.5 × 10−4 Ωcm. Resistivity as low as 5.2 × 10−4 Ωcm and mobility as high as 43.5 cm2/Vs are obtained for 135-nm films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.

Similar content being viewed by others

References

  1. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48(5), 458 (2010).

    Article  CAS  Google Scholar 

  2. H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore, and D.B. Chrisey: Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88(10), 6021 (2000).

    Article  CAS  Google Scholar 

  3. K.J. Kumar, N.R.C. Raju, and A. Subrahmanyam: Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering. Appl. Surf. Sci. 257(7), 3075 (2011).

    Article  CAS  Google Scholar 

  4. F.M. Amanullah, K.J. Pratap, and V.H. Babu: Thickness dependence of electrical and structural properties of FTO films. Cryst. Res. Technol. 26, 1099 (1991).

    Article  CAS  Google Scholar 

  5. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, P.S. Patil, and C.H. Bhosale: Properties of highly oriented spray-deposited fluorine-doped tin oxide thin films on glass substrates of different thickness. J. Phys. Chem. Solids 68(10), 1981 (2007).

    Article  CAS  Google Scholar 

  6. A. Rakhshani, Y. Makdisi, and H. Ramazaniyan: Electronic and optical properties of fluorine-doped tin oxide films. J. Appl. Phys. 83(2), 1049 (1998).

    Article  CAS  Google Scholar 

  7. E. Fortunato, A. Gonçalves, V. Assunção, A. Marques, H. Águas, L. Pereira, I. Ferreira, and R. Martins: Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence. Thin Solid Films 442(1–2), 121 (2003).

    Article  CAS  Google Scholar 

  8. T. Minami: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005).

    Article  CAS  Google Scholar 

  9. B-Z. Dong, G-J. Fang, J-F. Wang, W-J. Guan, and X-Z. Zhao: Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition. J. Appl. Phys. 101(3), 033713 (2007).

    Article  CAS  Google Scholar 

  10. A. Anders, S.H.N. Lim, K.M. Yu, J. Andersson, J. Rosén, M. McFarland, and J. Brown: High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition. Thin Solid Films 518, 3313 (2010).

    Article  CAS  Google Scholar 

  11. G-X. Liang, P. Fan, X-M. Cai, D-P. Zhang, and Z-H. Zheng: The influence of film thickness on the transparency and conductivity of al-doped ZnO thin films fabricated by ion-beam sputtering. J. Electron. Mater. 40(3), 267 (2011).

    Article  CAS  Google Scholar 

  12. H-C. Lee and O. Ok Park: The evolution of the structural, electrical and optical properties in indium-tin-oxide thin film on glass substrate by DC reactive magnetron sputtering. Vacuum 80(8), 880 (2006).

    Article  CAS  Google Scholar 

  13. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, and M. Wuttig: Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. J. Appl. Phys. 95(4), 1911 (2004).

    Article  CAS  Google Scholar 

  14. S.N. Bai and T.Y. Tseng: Effect of alumina doping on structural, electrical, and optical properties of sputtered ZnO thin films. Thin Solid Films 515(3), 872 (2006).

    Article  CAS  Google Scholar 

  15. R. Cebulla, R. Wendt, and K. Ellmer: Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 83(2), 1087 (1998).

    Article  CAS  Google Scholar 

  16. K. Ellmer, F. Kudella, R. Mientus, R. Schieck, and S. Fiechter: Influence of discharge parameters on the layer properties of reactive magnetron sputtered ZnO:Al films. Thin Solid Films 247(1), 15 (1994).

    Article  CAS  Google Scholar 

  17. G. Fang, D. Li, and B-L. Yao: Fabrication and characterization of c-axis-oriented transparent conductive nanocrystalline AZO thin films by rf magnetron sputtering. Proc. SPIE 4919, 405 (2002).

    Article  Google Scholar 

  18. J-W. Hoon, K-Y. Chan, J. Krishnasamy, T-Y. Tou, and D. Knipp: Direct current magnetron sputter-deposited ZnO thin films. Appl. Surf. Sci. 257(7), 2508 (2011).

    Article  CAS  Google Scholar 

  19. S. Jäger, B. Szyszka, J. Szczyrbowski, and G. Bräuer: Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering. Surf. Coat. Tech. 98(1–3), 1304 (1998).

    Article  Google Scholar 

  20. S. Maniv, W. Westwood, and E. Colombini: Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers. J. Vac. Sci. Technol. 20(2), 162 (1982).

    Article  CAS  Google Scholar 

  21. B. Szyszka: Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films 351, 164 (1999).

    Article  CAS  Google Scholar 

  22. K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga, and I. Nakabayashi: Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets. Thin Solid Films 334(1–2), 35 (1998).

    Article  CAS  Google Scholar 

  23. A. Di Trolio, E.M. Bauer, G. Scavia, and C. Veroli: Blueshift of optical band gap in c-axis oriented and conducting Al-doped ZnO thin films. J. Appl. Phys. 105(11), 113109 (2009).

    Article  CAS  Google Scholar 

  24. S-M. Park, T. Ikegami, and K. Ebihara: Investigation of transparent conductive oxide Al-doped ZnO films produced by pulsed laser deposition. Jpn. J. Appl. Phys. 44(11), 8027 (2005).

    Article  CAS  Google Scholar 

  25. S. Prasad, J. Nainaparampil, and J. Zabinski: Tribological behavior of alumina doped zinc oxide films grown by pulsed laser deposition. J. Vac. Sci. Technol., A 20(5), 1738 (2002).

    Article  CAS  Google Scholar 

  26. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda: Transparent conducting Al-doped ZnO thin films prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 35, L56 (1996).

    Article  CAS  Google Scholar 

  27. A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda: Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition. Thin Solid Films 517(4), 1478 (2008).

    Article  CAS  Google Scholar 

  28. H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami: Low resistivity polycrystalline ZnO:Al thin films prepared by pulsed laser deposition. J. Vac. Sci. Technol., A 22(4), 1757 (2004).

    Article  CAS  Google Scholar 

  29. B.K. Tay, Z.W. Zhao, and D.H.C. Chua: Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng., R 52(1–3), 1 (2006).

    Article  CAS  Google Scholar 

  30. S. Goldsmith: Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties. Surf. Coat. Tech. 201(7), 3993 (2006).

    Article  CAS  Google Scholar 

  31. H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, and B.K. Tay: Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique. J. Cryst. Growth 268(3–4), 596 (2004).

    Article  CAS  Google Scholar 

  32. R.J. Mendelsberg, S.H.N. Lim, Y.K. Zhu, J. Wallig, D.J. Milliron, and A. Anders: Achieving high mobility ZnO:Al at very high growth rates by dc filtered cathodic arc deposition. J. Phys. D: Appl. Phys. 44(23), 232003 (2011).

    Article  CAS  Google Scholar 

  33. V.N. Zhitomirsky, E. Çetinörgü, E. Adler, Y. Rosenberg, R.L. Boxman, and S. Goldsmith: Filtered vacuum arc deposition of transparent conducting Al-doped ZnO films. Thin Solid Films 515(3), 885 (2006).

    Article  CAS  Google Scholar 

  34. A. Anders: Atomic scale heating in cathodic arc plasma deposition. Appl. Phys. Lett. 80(6), 1100 (2002).

    Article  CAS  Google Scholar 

  35. A. Anders: Energetic deposition using filtered cathodic arc plasmas. Vacuum 67, 673 (2002).

    Article  CAS  Google Scholar 

  36. A. Anders: Approaches to rid cathodic arc plasma of macro- and nanoparticles: A review. Surf. Coat. Tech. 120–, 319 (1999).

    Article  Google Scholar 

  37. A. Anders: Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York, 2008).

    Book  Google Scholar 

  38. A. Anders and M. Kühn: Characterization of a low-energy constricted-plasma source. Rev. Sci. Instrum. 69(3), 1340 (1998).

    Article  CAS  Google Scholar 

  39. Z-C. Jin, I. Hamberg, and C.G. Granqvist: Optical properties of sputter-deposited ZnO:Al thin films. J. Appl. Phys. 64(10), 5117 (1988).

    Article  CAS  Google Scholar 

  40. I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21(5), S117 (2003).

    Article  CAS  Google Scholar 

  41. U. Betz, M.K. Olsson, J. Marthy, and M.F. Escolá: On the synthesis of ultra smooth ITO thin films by conventional direct current magnetron sputtering. Thin Solid Films 516(7), 1334 (2008).

    Article  CAS  Google Scholar 

  42. A. Klöppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube: Dependence of the electrical and optical behaviour of ITO-silver-ITO multilayers on the silver properties. Thin Solid Films 365, 139 (2000).

    Article  Google Scholar 

  43. S. Kuriki and T. Kawashima: Mechanical properties of Al2O3-doped (2 wt.%) ZnO films. Thin Solid Films 515(24), 8594 (2007).

    Article  CAS  Google Scholar 

  44. H.P. Chang, F.H. Wang, J.Y. Wu, C.Y. Kung, and H.W. Liu: Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment. Thin Solid Films 518(24), 7445 (2010).

    Article  CAS  Google Scholar 

  45. R. Konishi, K. Noda, H. Harada, and H. Sasakura: The preparation of transparent ZnO: Al thin films. J. Cryst. Growth 117(1–4), 939 (1992).

    Article  CAS  Google Scholar 

  46. H.W. Lee, S.P. Lau, Y.G. Wang, B.K. Tay, and H.H. Hng: Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique. Thin Solid Films 458(1–2), 15 (2004).

    Article  CAS  Google Scholar 

  47. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda: Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445(2), 263 (2003).

    Article  CAS  Google Scholar 

  48. H. Kim, A. Piqué, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, and D.B. Chrisey: Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 377–, 798 (2000).

    Article  Google Scholar 

  49. N. Ghafoor, F. Eriksson, P.O.Å. Persson, L. Hultman, and J. Birch: Effects of ion-assisted growth on the layer definition in Cr/Sc multilayers. Thin Solid Films 516(6), 982 (2008).

    Article  CAS  Google Scholar 

  50. S. Tungasmita, P. Persson, L. Hultman, and J. Birch: Pulsed low-energy ion-assisted growth of epitaxial aluminum nitride layer on 6H-silicon carbide by reactive magnetron sputtering. J. Appl. Phys. 91(6), 3551 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank J. Wallig, K.M. Yu, and D.J. Milliron for their contributions to this work. Research was supported by the LDRD (Laboratory-Directed Research and Development) Program of Lawrence Berkeley National Laboratory, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies under U.S. Department of Energy Contract No. DE-AC02-05CH11231. Portions of this work were performed as a User Project at the LBNL Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, under the same contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuankun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Mendelsberg, R.J., Lim, S.H. et al. Improved structural and electrical properties of thin ZnO:Al films by dc filtered cathodic arc deposition. Journal of Materials Research 27, 857–862 (2012). https://doi.org/10.1557/jmr.2011.342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.342

Navigation