Skip to main content
Log in

GeOx and SiOx nanowires grown via the active oxidation of Ge and Si substrates

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we show that the volatile monoxide species generated during the active oxidation of Ge and Si substrates can be utilized in the presence of Au catalytic nanoparticles to nucleate and grow GeOx and SiOx nanowires. A simple thermodynamic model is developed to ascertain the critical O2 partial pressure as a function of temperature required for the active oxidation of Ge and Si substrates and is experimentally verified. The ideal conditions for uniform nanowire growth across the substrate are shown to be primarily dependent on the O2 partial pressure, the annealing temperature and thicknesses of the surface oxide, and deposited Au. The role of a metastable surface oxide separating the active oxidation and NW nucleation processes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. S. Barth, F. Hernandez-Ramirez, J.D. Holmes, and A. Romano-Rodriguez: Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55(6), 563 (2010).

    Article  CAS  Google Scholar 

  2. Z.L. Wang: Oxide nanobelts and nanowires—Growth, properties and applications. J. Nanosci. Nanotechnol. 8(1), 27 (2008).

    Article  CAS  Google Scholar 

  3. C.N.R Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj: Inorganic nanowires. Prog. Solid State Chem. 31(1/2), 5 (2003).

    Article  CAS  Google Scholar 

  4. R. Takagi: Growth of oxide whiskers on metals at high temperature. J. Phys. Soc. Jpn. 12(11), 1212 (1957).

    Article  CAS  Google Scholar 

  5. A. Weiss and A. Weiss: Über Siliziumchalcogenide VI. Zur Kenntnis der faserigen Siliciumdioxyd-modifikation. Z. Anorg. Allg. Chem. 276(1/2), 95 (1954).

    Article  CAS  Google Scholar 

  6. R.B. Sosman: The Phases of Silica (Rutgers University Press, Piscataway, NJ, 1965).

    Google Scholar 

  7. E.A. Gulbransen: Thermochemistry and oxidation of refractory metals at high temperature. Corrosion 26(1), 19 (1970).

    Article  CAS  Google Scholar 

  8. T. Engel: The interaction of molecular and atomic oxygen with Si(100) and Si(111). Surf. Sci. Rep. 18(4), 91 (1993).

    Article  CAS  Google Scholar 

  9. J.R. Engstrom, D.J. Bonser, M.M. Nelson, and T. Engel: The reaction of atomic oxygen with Si(100) and Si(111). 1. Oxide decomposition, active oxidation and the transition to passive oxidation. Surf. Sci. 256(3), 317 (1991).

    Article  CAS  Google Scholar 

  10. T.H. Kim, A. Shalav, and R.G. Elliman: Active-oxidation of Si as the source of vapor-phase reactants in the growth of SiOx nanowires on Si. J. Appl. Phys. 108(7), 076102 (2010).

    Article  Google Scholar 

  11. A. Shalav, T. Kim, and R.G. Elliman: SiOx nanowires grown via the active oxidation of silicon. Sel. Top. Quant. Elect. (2010, in press).

    Google Scholar 

  12. J. Vanhellemont and E. Simoen: Brother silicon, sister germanium. J. Electrochem. Soc. 154(7), H572 (2007).

    Article  CAS  Google Scholar 

  13. M. Micoulaut, L. Cormier, and G.S. Henderson: The structure of amorphous, crystalline and liquid GeO2. J. Phys. Condens. Matter 18(45), R753 (2006).

    Article  CAS  Google Scholar 

  14. K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino: Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces. Appl. Phys. Lett. 76(16), 2244 (2000).

    Article  CAS  Google Scholar 

  15. O. Knacke, O. Kubaschewski, and K. Hesselman: Thermochemical Properties of Inorganic Substances, 2 ed. (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  16. M. Chase: NIST-JANAF Thermochemical Tables—4th ed., J. of Phys. Chem. Ref. Data, Monograph No. 9 (1998).

    Google Scholar 

  17. B.J. McBride, S. Gordon, and M. Reno: Thermodynamic data for fifty reference elements, NASA Technical Memorandum 3287/REV1 (2001).

    Google Scholar 

  18. A.T. Dinsdale: SGTE data for pure elements. CALPHAD 15(4), 317 (1991).

    Article  CAS  Google Scholar 

  19. K. Nagashio, C.H. Lee, T. Nishimura, K. Kita, and A. Toriumi: Thermodynamics and kinetics for suppression of GeO desorption by high pressure oxidation of Ge, in CMOS Gate-Stack Scaling-Materials, Interfaces and Reliability Implications, edited by A.D. Demkov, B. Taylor, H.R. Harris, J.W. Butterbaugh, and W. Rachmady (Mater. Res. Soc. Symp. Proc. 1155, Warrendale, PA, 2009), 1155-C06-02, p. 157.

    Google Scholar 

  20. C.H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi: Ge/GeO2 interface control with high-pressure oxidation for improving electrical characteristics. Appl. Phys. Expr. 2(7), 071404 (2009).

    Article  Google Scholar 

  21. E.A. Gulbransen and S.A. Jansson: High-temperature oxidation, reduction, and volatilization reactions of silicon and silicon-carbide. Oxid. Met. 4(3), 181 (1972).

    Article  CAS  Google Scholar 

  22. J.W. Hinze and H.C. Graham: Active oxidation of Si and SiC in viscous gas-flow regime. J. Electrochem. Soc. 123(7), 1066 (1976).

    Article  CAS  Google Scholar 

  23. C. Gelain, A. Cassuto, and P. Legoff: Kinetics and mechanism of low-pressure, high-temperature oxidation of silicon. Oxid. Met. 3(2), 139 (1971).

    Article  CAS  Google Scholar 

  24. F.W. Smith and G. Ghidini: Reaction of oxygen with Si(111) and (100)—critical conditions for the growth of SiO2. J. Electrochem. Soc. 129(6), 1300 (1982).

    Article  CAS  Google Scholar 

  25. C. Wagner: Passivity during the oxidation of silicon at elevated temperatures. J. Appl. Phys. 29(9), 1295 (1958).

    Article  CAS  Google Scholar 

  26. A. Molle, M.N.K Bhulyan, G. Tallarida, and M. Fanciulli: Formation and stability of germanium oxide induced by atomic oxygen exposure. Mat. Sci. Semicond. Process. 9(4/5), 673 (2006).

    Article  CAS  Google Scholar 

  27. P.K. Sekhar and S. Bhansali: Manufacturing aspects of oxide nanowires. Mater. Lett. 64(6), 729 (2010).

    Article  CAS  Google Scholar 

  28. P.Y. Chevalier: A thermodynamic evaluation of the Au-Ge and Au-Si systems. Therm. Acta 141, 217 (1989).

    Article  CAS  Google Scholar 

  29. M. Liehr, H. Dallaporta, and J.E. Lewis: Defect formation in SiO2/Si(100) by metal diffusion and reaction. Appl. Phys. Lett. 53(7), 589 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The Australian Research Council is gratefully acknowledged for financial support. The Australian National University nodes of the Australian Nano Fabrication Facility and the Australian Microscopy & Microanalysis Research Facility, both established under the Australian National Cooperative Research Infrastructure Strategy, are acknowledged for access to the facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Shalav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalav, A., Collin, G.H., Yang, Y. et al. GeOx and SiOx nanowires grown via the active oxidation of Ge and Si substrates. Journal of Materials Research 26, 2240–2246 (2011). https://doi.org/10.1557/jmr.2011.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.150

Navigation