Skip to main content
Log in

Pressure sensitive flow and constraint factor in amorphous materials below glass transition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The constraint factor, C (given by the hardness-yield strength ratio H/Y in the fully plastic regime of indentation), in metallic glasses, is greater than three, a reflection of the sensitivity of their plastic flow to pressure. Furthermore, C increases with increasing temperature. In this work, we examine if this is true in amorphous polymers as well, through experiments on amorphous poly(methyl methacrylate) (PMMA). Uniaxial compression as well as spherical indentation tests were conducted in the 248–348 K range to construct H/Y versus indentation strain plots at each temperature and obtain the C-values. Results show that C increases with temperature in PMMA as well. Good correlation between the loss factors, measured using a dynamic mechanical analyzer, and C, suggest that the enhanced sensitivity to pressure is possibly due to β-relaxation. We offer possible mechanistic reasons for the observed trends in amorphous materials in terms of relaxation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor: Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  2. R. Hill, E.H. Lee, and S.J. Tupper: Theory of wedge indentation. Proc. R. Soc. A 188, 273 (1947).

    Google Scholar 

  3. S. Ramachandra, P. Sudheer Kumar, and U. Ramamurty: Impact energy absorption in an Al foam at low velocities. Scr. Mater. 49, 741 (2003).

    Article  CAS  Google Scholar 

  4. U. Ramamurty and M.C. Kumaran: Mechanical property extraction through conical indentation of a closed-cell aluminum foam. Acta Mater. 52, 181 (2004).

    Article  CAS  Google Scholar 

  5. R. Hill: The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1950).

    Google Scholar 

  6. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  7. D. Marsh: Plastic flow in glass. Proc. R. Soc. A 279, 420 (1964).

    Google Scholar 

  8. M.C. Shaw: The fundamental basis of the hardness test, in The Science of Hardness Testing and Its Research Applications, edited by J.H. Westbrook and H. Conrad (American Society for Metals, Metals Park, OH, 1973), p. 1.

    Google Scholar 

  9. G. Sundararajan and Y. Tirupataiah: The localization of plastic flow under dynamic indentation conditions: I. Experimental results. Acta Mater. 54, 565 (2006).

    Article  CAS  Google Scholar 

  10. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  11. M. Sakai, T. Akatsu, S. Numata, and K. Matsuda: Linear strain hardening in elastoplastic indentation contact. J. Mater. Res. 18, 2087 (2003).

    Article  CAS  Google Scholar 

  12. R. Narasimhan: Analysis of indentation pf pressure sensitive plastic solids using expanding cavity model. Mech. Mater. 36, 633 (2004).

    Article  Google Scholar 

  13. M.N.M. Patnaik, R. Narasimhan, and U. Ramamurty: Spherical indentation response of metallic glasses. Acta Mater. 52, 3335 (2004).

    Article  CAS  Google Scholar 

  14. V. Keryvin: Indentation of bulk metallic glasses: Relationships between sharp bands observed around the prints and hardness. Acta Mater. 55, 2565 (2007).

    Article  CAS  Google Scholar 

  15. K. Eswar Prasad, R. Raghavan, and U. Ramamurty: Temperature dependence of pressure sensitivity in a metallic glass. Scr. Mater. 57, 121 (2007).

    Article  CAS  Google Scholar 

  16. V. Keryvin, K.E. Prasad, Y. Gueguen, J-C. Sangleboeuf, and U. Ramamurty: Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition. Philos. Mag. 88, 1773 (2008).

    Article  CAS  Google Scholar 

  17. A. Kumaraswamy and B. Venkataraman: Effect of temperature on constraint factor of Ti–6Al–4V under static indentation conditions. Scr. Mater. 54, 493 (2006).

    Article  CAS  Google Scholar 

  18. C. Bauwens-Crowet, J.C. Bauwens, and G. Homes: The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. J. Mater. Sci. 7, 172 (1972).

    Article  Google Scholar 

  19. E.T.J. Klompen, T.A.P. Engels, L.E. Govaert, and H.E. H. Meijer: Modeling of the postyield response of glassy polymers: Influence of thermomechanical history. Macromolecules 38, 6997 (2005).

    Article  CAS  Google Scholar 

  20. C. Pelletier: Mechanical characterization of glassy polymers using instrumented indentation. Ph.D. Thesis, Eindhoven University Technology (2008).

    Google Scholar 

  21. Z. Stachurski: Review of deformation and computer simulations in amorphous glassy polymers. J. Indust. Eng. Chem. 11, 773 (2005).

    CAS  Google Scholar 

  22. J. Perez: Physics and Mechanics of Amorphous Polymers (A.A. Balkema, Rotterdam, The Netherlands, 1998).

    Google Scholar 

  23. K. Puttick, L. Smith, and L. Miller: Stress fields round indentation in polymethylmethacrylate. J. Phys. D: Appl. Phys. 10, 617 (1977).

    Article  CAS  Google Scholar 

  24. J.L. Bucaille, C. Gauthier, E. Felder, and R. Schirrer: The influence of strain hardening of polymers on the piling-up phenomenon in scratch tests: Experiments and numerical modeling. Wear 260, 803 (2006).

    Article  CAS  Google Scholar 

  25. F.P. Ganneau, G. Constantinides, and F-J. Ulm: Dual-indentation technique for the assessment of strength properties of cohesivefrictional materials. Int. J. Solid Struct. 43, 1727 (2006).

    Article  CAS  Google Scholar 

  26. A. Khan and S. Huang: Continuum Theory of Plasticity (John Wiley, New York, 1995).

    Google Scholar 

  27. V. Keryvin: Indentation as a probe for pressure sensitivity. J. Phys. Condens. Matter 20, 114119 (2008).

    Article  CAS  Google Scholar 

  28. R. Quinson, J. Perez, M. Rink, and A. Pavan: Yield criteria for amorphous glassy polymers. J. Mater. Sci. 32, 1371 (1997).

    Article  CAS  Google Scholar 

  29. J. Lu and G. Ravichandran: Pressure dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass. J. Mater. Res. 18, 2039 (2003).

    Article  CAS  Google Scholar 

  30. J.J. Lewandowski and P. Lowhaphandu: Effect of hydrostatic pressure in the flow and fracture of a bulk amorphous metal. Philos. Mag. 82, 3427 (2002).

    Article  CAS  Google Scholar 

  31. R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).

    Article  CAS  Google Scholar 

  32. P.E. Donovan: Plastic flow and fracture of Pd40Ni40P20 metallic glass under an indenter. J. Mater. Sci. 24, 523 (1989).

    Article  CAS  Google Scholar 

  33. A.C. Lund and C.A. Schuh: Yield surface of a simulated metallic glass. Acta Mater. 51, 5399 (2003).

    Article  CAS  Google Scholar 

  34. S. Rabinowitz, I.M. Ward, and J.S.C. Parry: The effect of hydrostatic pressure on the shear yield behavior of polymers. J. Mater. Sci. 5, 29 (1970).

    Article  CAS  Google Scholar 

  35. S.S. Sternstein and L. Ongchin: Yield criteria for plastic deformation of glassy polymers in general stress fields. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 10, 1117 (1969).

    CAS  Google Scholar 

  36. P.B. Bowden and J.A. Jukes: The plastic flow of isotropic polymers. J. Mater. Sci. 7, 52 (1972).

    Article  CAS  Google Scholar 

  37. R.M. Nedderman: Static and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992).

    Book  Google Scholar 

  38. F.J. Baltá Calleja, D.S. Sanditov, and V.P. Privalko: Review: The microhardness of non-crystalline materials. J. Mater. Sci. 37, 4507 (2002).

    Article  Google Scholar 

  39. B. Briscoe and K. Sebastian: The elastoplastic response of poly (methyl methacrylate) to indentation. Proc. R. Soc. A 439, 452 (1996).

    Google Scholar 

  40. N. Flichy, S. Kazarian, C. Lawrence, and B. Briscoe: Indentation of polymethyl methacrylate under high pressure gasses. J. Polym. Sci., Part B: Polym. Phys. 39, 3020 (2001).

    Article  CAS  Google Scholar 

  41. S. Lafaye, C. Gauthier, and R. Schirrer: Analysis of the apparent friction of polymeric surfaces. J. Mater. Sci. 41, 6441 (2006).

    Article  CAS  Google Scholar 

  42. P.W. Bridgman and I. Simon: Effects of very high pressures on glass. J. Appl. Phys. 24, 405 (1953).

    Article  CAS  Google Scholar 

  43. H. Ji, V. Keryvin, T. Rouxel, and T. Hammouda: Densification of window glass under very high pressure and relevance to Vickers indentation. Scr. Mater. 55, 1159 (2006).

    Article  CAS  Google Scholar 

  44. G.N. Greaves and S. Sen: Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys. 56, 1 (2007).

    Article  CAS  Google Scholar 

  45. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  46. U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005).

    Article  CAS  Google Scholar 

  47. S. Jana, U. Ramamurty, K. Chattopadhyay, and Y. Kawamura: Subsurface deformation during Vickers indentation of bulk metallic glasses. Mater. Sci. Eng., A 375, 1191 (2004).

    Article  CAS  Google Scholar 

  48. C. Tang, Y. Li, and K. Zeng: Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques. Mater. Sci. Eng., A 304, 215 (2004).

    Article  CAS  Google Scholar 

  49. G.S. Yu, J.G. Lin, M. Mo, X.F. Wang, F.H. Wang, and C.E. Wen: Effect of relaxation on pressure sensitivity index in a Zr-based metallic glass. Mater. Sci. Eng., A 460, 58 (2007).

    Article  CAS  Google Scholar 

  50. V. Keryvin, R. Crosnier, R. Laniel, V.H. Hoang, and J-C. Sangleboeuf: Indentation and scatching mechanisms of a ZrCuAlNi bulk metallic glass. J. Phys. D: Appl. Phys. 41, 074029 (2008).

    Article  CAS  Google Scholar 

  51. P. Murali and U. Ramamurty: Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).

    Article  CAS  Google Scholar 

  52. R. Bhowmick, R. Raghavan, K. Chattopadhyay, and U. Ramamurty: Plastic flow softening in a bulk metallic glass. Acta Mater. 54, 4221 (2006).

    Article  CAS  Google Scholar 

  53. R. Raghavan, R. Ayer, H.W. Jin, C.N. Marzinsky, and U. Ramamurty: Effect of shot peening on the fatigue life of a Zr-based bulk metallic glass. Scr. Mater. 59, 167 (2008).

    Article  CAS  Google Scholar 

  54. A.S. Argon: Plastic deformation in metallic glass. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  55. F.H. Dalla Torre, A. Dubach, J. Schällibaum, and J.F. Löffler: Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Acta Mater. 56, 4635 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ramamurty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K.E., Keryvin, V. & Ramamurty, U. Pressure sensitive flow and constraint factor in amorphous materials below glass transition. Journal of Materials Research 24, 890–897 (2009). https://doi.org/10.1557/jmr.2009.0113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0113

Navigation