Skip to main content
Log in

Heteroepitaxial growth of 3C–SiC film on Si(100) substrate by plasma chemical vapor deposition using monomethylsilane

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.P. Elliot: Constitution of Binary Alloys (McGraw-Hill, New York, 1965), p. 227.

    Google Scholar 

  2. T. Furusho, S.K. Lilov, S. Ohshima, and S. Nishino: Crystal growth of silicon carbide in hydrogen atmosphere by sublimation close space technique. J. Cryst. Growth 237, 1235 (2002).

    Article  Google Scholar 

  3. D. Hofmann, M. Bickermann, R. Eckstein, M. Kolbl, St. G. Muller, E. Schmitt, A. Weber, and A. Winnacker: Sublimation growth of silicon carbide bulk crystals: Experimental and theoretical studies on defect formation and growth rate augmentation. J. Cryst. Growth 198, 1005 (1999).

    Article  Google Scholar 

  4. S.Yu. Karpov, A.V. Kulik, I.A. Zhmakin, Yu.N. Makarov, E.N. Mokhov, M.G. Ramm, M.S. Ramm, A.D. Roenkov, and Yu.A. Vodakov: Analysis of sublimation growth of bulk SiC crystals in tantalum container. J. Cryst. Growth 211, 347 (2000).

    Article  CAS  Google Scholar 

  5. P. Masri: Silicon carbide and silicon carbide-based structures: The physics of epitaxy. Surf. Sci. Rep. 48, 1 (2002).

    Article  CAS  Google Scholar 

  6. Y. Furumura, M. Doki, F. Mieno, T. Eshita, T. Suzuki, and M. Maeda: Heteroepitaxial beta-SiC on Si. J. Electrochem. Soc. 135, 1225 (1988).

    Article  Google Scholar 

  7. T. Sugii, T. Aoyama, and T. Ito: Low-temperature growth of beta-SiC on Si by gas-source MBE. J. Electrochem. Soc. 137, 989 (1990).

    Article  CAS  Google Scholar 

  8. K.W. Lee, K.W. Yu, J.H. Boo, Y. Kim, T. Hatayama, T. Kimoto, and H. Matsunami: Epitaxial growth of cubic SiC films on Si substrates by high vacuum chemical vapor deposition using 1, 3-disilabutane. J. Electrochem. Soc. 144, 1474 (1997).

    Article  CAS  Google Scholar 

  9. J.A. Powell, L.G. Matus, and M.A. Kuczmarski: Growth and characterization of cubic SiC single-crystal films on Si. J. Electrochem. Soc. 134, 1558 (1987).

    Article  CAS  Google Scholar 

  10. H.P. Liaw and R.F. Davis: Thermal stresses in heteroepitaxial beta silicon carbide thin films grown on silicon substrates. J. Electrochem. Soc. 131, 3014 (1984).

    Article  CAS  Google Scholar 

  11. S. Nishino, J.A. Powell, and H.A. Will: Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Appl. Phys. Lett. 42, 460 (1983).

    Article  CAS  Google Scholar 

  12. S. Nishino, H. Suhara, H. Ono, and H. Matsunami: Epitaxial growth and electric characteristics of cubic Sic on silicon. J. Appl. Phys. 61, 4889 (1987).

    Article  CAS  Google Scholar 

  13. H. Matsunami: Progress in epitaxial growth of SiC. Physica B 185, 65 (1993).

    Article  CAS  Google Scholar 

  14. P. Pirouz, C.M. Chorey, and J.A. Powell: Antiphase boundaries in epitaxially grown beta-SiC. Appl. Phys. Lett. 50, 221 (1987).

    Article  CAS  Google Scholar 

  15. K. Shibahara, S. Nishino, and H. Matsunami: Antiphase-domain-free growth of cubic SiC on Si(100). Appl. Phys. 50, 1888 (1987).

    CAS  Google Scholar 

  16. C.W. Liu and J.C. Sturm: Low-temperature CVD growth of beta-SiC on (100) Si using methylsilane and device characteristics. J. Appl. Phys. 82, 4558 (1997).

    Article  CAS  Google Scholar 

  17. Y. Fujiwara, E. Sakuma, S. Misawa, K. Endo, and S. Yoshida: Epitaxial growth of 3C-SiC on Si by low-pressure chemical vapor deposition. Appl. Phys. 49, 388 (1986).

    CAS  Google Scholar 

  18. K. Yasui, K. Asada, and T. Akahane: Epitaxial growth of 3C-SiC films on Si substrates by triode plasma CVD using dimethylsilane. Appl. Surf. Sci. 159, 556 (2000).

    Article  Google Scholar 

  19. T. Matsutani, M. Kiuchi, T. Takeuchi, T. Matsumoto, K. Mimoto, and S. Goto: Deposition of 3C-SiC films using ECR plasma of methylsilane. Vacuum 59, 152 (2000).

    Article  CAS  Google Scholar 

  20. K. Yasui, K. Asada, T. Maeda, and T. Akahane: Growth of high quality silicon carbide films on Si by triode plasma CVD using monomethylsilane. Appl. Surf. Sci. 175, 495 (2001).

    Article  Google Scholar 

  21. H. Nakazawa, M. Suemitsu, and S. Asami: Gas-source MBE of SiC/Si using monomethylsilane. Thin Solid Films 369, 269 (2000).

    Article  CAS  Google Scholar 

  22. K. Nishino, T. Kimoto, and H. Matsunami: Epitaxial growth of 3C-SiC on alpha-SiC substrates by chemical vapor deposition. In Silicon Carbide and Related Materials edited by M.G. Spencer, R.P. Devaty, J.A. Edmond, M.A. Khan, R. Kaplan and M. Rahman, Institute of Physics Conference Series Number 137 (IOP Publishing, Bristol and Philadelphia, 1994), p. 33.

    Google Scholar 

  23. Y. Gao, J.H. Edgar, J. Chaudhuri, S.N. Cheema, M.V. Sidorov, and D.N. Braski: Low-temperature chemical-vapor deposition of 3C-SiC films on Si(100) using SiH4-C2H4-HCl-H2. J. Cryst. Growth 191, 439 (1998).

    Article  CAS  Google Scholar 

  24. Y. Chen, K. Matsumoto, Y. Nishio, T. Shirafuji, and S. Nishino: Heteroepitaxial growth of 3C-SiC using HMDS by atmospheric CVD. Mater. Sci. Eng. 61, 579 (1999).

    Article  Google Scholar 

  25. K. Teker, C. Jacob, J. Chung, and M.H. Hong: Thin solid films: Epitaxial growth of 3C-SiC on Si(001) using hexamethyldisilane and comparison with growth on Si(111). Thin Solid Films 371, 53 (2000).

    Article  CAS  Google Scholar 

  26. I. Goleck, F. Reidinger, and J. Marti: Single-crystalline, epitaxial cubic SiC films grown on (100) Si at 750 °C by chemical vapor deposition. Appl. Phys. Lett. 60, 1703 (1992).

    Article  Google Scholar 

  27. Y. Ohshita: Reactants in SiC chemical vapor deposition using CH3SiH3 as a source gas. J. Cryst. Growth 147, 111 (1995).

    Article  CAS  Google Scholar 

  28. K.C. Kim and C. Park II: Formation mechanism of interfacial voids in the growth of SiC films on Si substrates. J. Vac. Sci. Technol. 19, 2636 (2001).

    Article  CAS  Google Scholar 

  29. M. Shinohara, T. Maehama, and M. Niwano: Adsorption and decomposition of methylsilanes on Si(100). Appl. Surf. Sci. 162, 161 (2000).

    Article  Google Scholar 

  30. P.L. Silvestrelli, C. Sbraccia, and F. Ancilotto: J. Chem. Phys. 116, 6291 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morikawa, Y., Hirai, M., Ohi, A. et al. Heteroepitaxial growth of 3C–SiC film on Si(100) substrate by plasma chemical vapor deposition using monomethylsilane. Journal of Materials Research 22, 1275–1280 (2007). https://doi.org/10.1557/jmr.2007.0151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0151

Navigation