Skip to main content
Log in

Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A class of Ni–Co–Nb–Ta bulk metallic glasses (BMGs) with a high glass-forming ability is developed. With proper compositional modification, the BMGs exhibit the enhanced plastic strain (up to 4%) and the ultimate strength (up to 3540 MPa). It is found that the interactions of shear bands such as intersecting, arresting, and branching, which normally are related to the plastic metallic glasses, can be observed both in the plastic and brittle Ni–Co–Nb–Ta BMGs. Obvious serrated flow behavior is observed during plastic deformation. The origins of the plasticity and the serrated flow in the Ni-based BMGs are analyzed in analogy to that in crystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  2. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R. 44, 45 (2004).

    Article  Google Scholar 

  3. S. Li and W.H. Wang: Formation and properties of new heavy rare-earth-based bulk metallic glasses. Sci. Technol. Adv. Mater. 6, 823 (2005).

    Article  CAS  Google Scholar 

  4. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  5. C. Fan and A. Inoue: Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett. 77, 46 (2000).

    Article  CAS  Google Scholar 

  6. H. Choi-Yim, R. Busch, U. Koester, and W.L. Johnson: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).

    Article  CAS  Google Scholar 

  7. L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B. 64, 180201 (2001).

    Article  Google Scholar 

  8. J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Article  Google Scholar 

  9. M.B. Tang and W.H. Wang: CuZr binary bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).

    Article  CAS  Google Scholar 

  10. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).

    Article  Google Scholar 

  11. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  12. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  13. T.C. Hufnagel, P. El-Deiry, and R.P. Vinci: Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scr. Mater. 43, 1071 (2000).

    Article  CAS  Google Scholar 

  14. A.Yu. Vinogradov and V.A. Khonik: Kinetics of shear banding in a bulk metallic glass monitored by acoustic emission measurements. Philos. Mag. 84, 2147 (2004).

    Article  CAS  Google Scholar 

  15. C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  16. Y.I. Golovin, V.I. Ivologin, V.A. Knonik, K. Kitagawa, and A.I. Tyurin: Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater. 45, 947 (2001).

    Article  CAS  Google Scholar 

  17. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  18. P.E. Donovan and W.M. Stobbs: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 (1981).

    Article  CAS  Google Scholar 

  19. P.S. Steif, F. Spaepen, and J.W. Hutchinson: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).

    Article  CAS  Google Scholar 

  20. A.S. Argon, J. Megusar, and N.J. Grant: Shear band induced dilations in metallic glasses. Scripta Metall. 19, 591 (1985).

    Article  CAS  Google Scholar 

  21. X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, and J.J. Levandowski: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).

    Article  CAS  Google Scholar 

  22. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

    Article  CAS  Google Scholar 

  23. J. Saida, A. Deny, H. Setyawan, H. Kato, and A. Inoue: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).

    Article  Google Scholar 

  24. Y.F. Sun, B.C. Wei, Y.R. Wang, W.H. Li, and C.H. Shek: Enhanced plasticity of Zr-based bulk metallic glass matrix composite with ductile reinforcement. J. Mater. Res. 20, 2386 (2005).

    Article  CAS  Google Scholar 

  25. J.C. Lee, Y.C. Kim, J.P. Ahn, and H.S. Kim: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).

    Article  CAS  Google Scholar 

  26. W.J. Wright, R. Saha, and W.D. Nix: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans., JIM 42, 642 (2001).

    Article  CAS  Google Scholar 

  27. T. Masumoto and R. Maddin: Structural stability and mechanical properties of amorphous metals. Mater Sci. Eng. 19, 1 (1975).

    Article  CAS  Google Scholar 

  28. D.M. Xing, T.H. Zhang, and B.C. Wei: Deformation morphology underneath the Vickers indent in bulk metallic glasses. Chin. Phys. Lett. 22, 1994 (2005).

    Article  CAS  Google Scholar 

  29. F. Chmelík, E. Pink, J. Król, J. Balík, J. Pešička, and P. Lukáč: Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission. Acta Mater. 46, 4435 (1998).

    Article  Google Scholar 

  30. M.H. Lee, D.H. Bae, W.T. Kim, and D.H. Kim: Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans., JIM 44, 2084 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y.H., Wang, G., Pan, M.X. et al. Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity. Journal of Materials Research 22, 869–875 (2007). https://doi.org/10.1557/jmr.2007.0104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0104

Navigation