Skip to main content
Log in

Lowering mechanical degradation of drag reducers in turbulent flow

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Drag reduction (DR) agents are used in several ppm concentrations to accelerate significantly the flow through conduits in oil pipelines, oil well operations, flood water disposal, fire fighting, field irrigation, transport of suspensions and slurries, sewage systems, water heating and cooling systems, airplane tank filling, marine systems, and also in biomedical systems including blood flow. The drag reduction agents are typically high molecular mass polymers; in industrial applications they undergo mechanical degradation in turbulent flow. We provide an equation that describes quantitatively the degradation, thus predicting drag reduction as a function of time and of the concentration of the drag reduction agent. We report how grafting a polymer on the backbone of a different polymer affects the drag reduction efficacy. Our grafted polymer undergoes degradation by flow turbulence more slowly and also provides high levels of drag reduction efficacy at much lower concentrations than homopolymers do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.R. Cox, E.H. Dunlop, and A.M. North: Role of molecular aggregates in liquid drag reduction by polymers. Nature 249, 243 (1974).

    Article  CAS  Google Scholar 

  2. W.M. Kulicke, M. Kötter, and H. Gräger: Drag reduction phenomenon with special emphasis on homogeneous polymer solutions. Adv. Polymer Sci. 89, 1 (1989).

    Article  CAS  Google Scholar 

  3. R.P. Singh: Drag reduction. Ch. 14 in Encyclopedia of Fluid Mechanics, edited by N.P. Cheremisinoff (Gulf, Houston, 1990).

  4. A. Gyr and H.W. Bewersdorff: Drag Reduction in Turbulent Flow by Additives (Kluwer, Dordrecht–Boston, 1995).

    Book  Google Scholar 

  5. R.A. Mostardi, L.C. Thomas, H.L. Greene, F. Van Essen, and R.F. Nokes: Suppression of atherosclerosis in rabbits using drag reducing polymers. Biorheology 15, 1 (1978).

    CAS  Google Scholar 

  6. H.L. Greene, R.F. Mostardi, and R.F. Nokes: Effects of drag reducing polymers on initiation of atherosclerosis. Polymer Eng. Sci. 20, 499 (1980).

    Article  CAS  Google Scholar 

  7. J.L. Zakin and D.L. Hunston: Effects of solvent nature on the mechanical degradation of high polymer solutions. J. Appl. Polym. Sci. 22, 1763 (1978).

    Article  CAS  Google Scholar 

  8. D.L. Hunston and J.L. Zakin: Flow-assisted degradation in dilute polystyrene solutions. Polymer Eng. Sci. 20, 517 (1980).

    Article  CAS  Google Scholar 

  9. E.F. Lucas, B.G. Soares, and E. Monteiro: Characterization of polymers (Caracterização de Polimeros) in Portugese (e-papers, Rio de Janeiro, 2001).

    Google Scholar 

  10. U.W. Gedde: Polymer Physics (Springer, Berlin–New York, 2002).

    Google Scholar 

  11. W. Brostow: Drag reduction and mechanical degradation in polymer solutions in flow. Polymer 24, 631 (1980).

    Article  Google Scholar 

  12. W. Brostow: Macromolecular conformations in solutions. I. Model for chains with partial flexibility. J. Stat. Phys. 29, 849 (1982).

    Article  Google Scholar 

  13. W. Brostow, M.A. Macip, and J.S. Sochanski: Macromolecular conformations in solutions. II. Thermodynamics of interactions. J. Stat. Phys. 29, 865 (1982).

    Article  Google Scholar 

  14. W. Brostow, H. Ertepinar, and R.P. Singh: Flow of dilute polymer solutions: chain conformations and degradation of drag reducers. Macromolecules 23, 5109 (1990).

    Article  CAS  Google Scholar 

  15. O. Kube, E. Wendt, and J. Springer: Numerical evaluation of screening length and anomalous small-angle x-ray scattering of polystyrene in benzene. Polymer 28, 1635 (1988).

    Article  Google Scholar 

  16. E. Wendt and J. Springer: Screening and excess low-angle scattering in semidilute solutions of polystyrene in benzene. Polymer 29, 1301 (1988).

    Article  CAS  Google Scholar 

  17. W. Brostow, M. Drewniak, and N.N. Medvedev: Chain overlap and entanglements in dilute polymer solutions: Brownian dynamics simulations. Macromol. Rapid Commun. 4, 745 (1995).

    CAS  Google Scholar 

  18. W. Brostow and M. Drewniak: Computer simulation of chain conformations in dilute polymer solutions. J. Chem. Phys. 105, 7135 (1996).

    Article  CAS  Google Scholar 

  19. W. Brostow, S. Majumdar, and R.P. Singh: Drag reduction and solvation in polymer solutions. Macromol. Rapid Commun. 20, 144 (1999).

    Article  CAS  Google Scholar 

  20. S.R. Deshmukh and R.P. Singh: Drag reduction characteristics of graft copolymers of xanthangum and polyacrylamide. J. Appl. Polym. Sci. 32, 6163 (1986).

    Article  CAS  Google Scholar 

  21. S.K. Rath and R.P. Singh: Flocculation characteristics of grafted and ungrafted starch, amylose, and amylopectin. J. Appl. Polym. Sci. 66, 1721 (1997).

    Article  CAS  Google Scholar 

  22. S.K. Rath and R.P. Singh: Grafted amylopectin: Applications in flocculation. Colloids Surf., A 139, 129 (1998).

    Article  CAS  Google Scholar 

  23. S.K. Rath and R.P. Singh: On the characterization of grafted and ungrafted starch, amylose, and amylopectin. J. Appl. Polym. Sci. 70, 1795 (1998).

    Article  CAS  Google Scholar 

  24. R.P. Singh, G.P. Karmakar, S.K. Rath, N.C. Karmakar, S.R. Pandey, T. Tripathi, J. Panda, K. Kannan, S.K. Jain, and N.T. Lan: Biodegradable drag reducing agents and flocculants based on polysaccharides: Materials and applications. Polymer Eng. Sci. 40, 46 (2000).

    Article  CAS  Google Scholar 

  25. S.T. Lim, H.J. Choi, D. Biswal, and R.P. Singh: Turbulent drag reduction characteristics of amylopectin and its derivative. e-Polymers 066 (2004).

  26. R.W. Kowalik, I. Duvdevani, D.G. Pfeiffer, N.D. Lundeberg, K. Kitano, and D.N. Schultz: Enhanced drag reduction via interpolymer associations. J. Non-Newtonian Fluid Mech. 24, 1 (1987).

    Article  CAS  Google Scholar 

  27. H.J. Choi, S.T. Lim, P.Y. Lai, and C.K. Chan: Turbulent drag reduction and degradation of DNA. Phys. Rev. Lett. 89, 088302 (2002).

    Article  CAS  Google Scholar 

  28. S.T. Lim, S.J. Park, C.K. Chan, and H.J. Choi: Turbulent drag reduction characteristics induced by calf-thymus DNA. Physica A (Amsterdam) 350, 84 (2005).

    Article  CAS  Google Scholar 

  29. J.B. Bello, A.J. Muller, and A.E. Saenz: Effect of intermolecular crosslinks on drag reduction by polymer solutions. Polym. Bull. 36, 111 (1996).

    Article  CAS  Google Scholar 

  30. C.A. Kim, H.J. Choi, C.B. Kim, and M.S. Jhon: Drag reduction characteristics of polysaccharide xanthan gum. Macromol. Rapid Commun. 19, 419 (1998).

    Article  CAS  Google Scholar 

  31. C.A. Kim, D.S. Jo, H.J. Choi, C.B. Kim, and M.S. Jhon: A high-precision rotating disk apparatus for drag reduction characterization. Polymer Testing 20, 43 (2001).

    Article  CAS  Google Scholar 

  32. H.J. Choi, C.A. Kim, and M.S. Jhon: Universal drag reduction characteristics of polyisobutylene in a rotating disk apparatus. Polymer 40, 4527 (1999).

    Article  CAS  Google Scholar 

  33. J.W. Hoyt: An apparatus for drag reduction determination, in Symposium on Rheology, edited by A.W. Morris and J.S. Wang (Am. Soc. Mech. Engrs., New York, 1975), p. 258.

  34. W. Brostow and B.A. Wolf: Chain overlap and intersegmental interactions in polymers solutions. Polym. Commun. 32, 551 (1991).

    Article  CAS  Google Scholar 

  35. H.J. Choi, C.A. Kim, J.I. Sohn, and M.S. Jhon: An exponential decay function of polymer degradation in turbulent drag reduction. Polym. Degrad. Stab. 69, 341 (2000).

    Article  CAS  Google Scholar 

  36. R. Roy: Interdisciplinary materials research: The reluctant reformer of western science. Internat. Union Mater. Res. Societies Facets 4(2), 18 (2005).

    Google Scholar 

  37. R. Hofmann: Some reasons to be interested in carbides. Invited lecture at the 13th Annual POLYCHAR World Forum on Advanced Materials (Singapore, July 3–8, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Brostow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brostow, W., Hagg Lobland, H.E., Reddy, T. et al. Lowering mechanical degradation of drag reducers in turbulent flow. Journal of Materials Research 22, 56–60 (2007). https://doi.org/10.1557/jmr.2007.0003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0003

Navigation