Skip to main content
Log in

Micromechanical model for hydroxyapatite whisker reinforced polymer biocomposites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A micromechanical model was developed to predict the elastic moduli of hydroxyapatite (HA) whisker reinforced polymer biocomposites based upon the elastic properties of each phase and the reinforcement volume fraction, morphology, and preferred orientation. The effects of the HA whisker volume fraction, morphology, and orientation distribution were investigated by comparing model predictions with experimentally measured elastic moduli for HA whisker reinforced high-density polyethylene composites. Predictions using experimental measurements of the HA whisker aspect ratio distribution and orientation distribution were also compared to common idealized assumptions. The best model predictions were obtained using the experimentally measured HA whisker aspect ratio distribution and orientation distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bonfield, M.D. Grynpas, A.E. Tully, J. Bowman, J. Abram: Hydroxyapatite reinforced polyethylene—A mechanically compatible implant material for bone-replacement. Biomaterials 2, 185 (1981).

    CAS  Google Scholar 

  2. W. Bonfield: Composites for bone replacement. J. Biomed. Eng. 10, 522 (1988).

    CAS  Google Scholar 

  3. W. Bonfield, J.A. Bowman and M.D. Grynpas: Composite material for use in orthopaedics, U.S. Patent No. 5 017 627 (1991).

    Google Scholar 

  4. N.H. Ladizesky, I.M. Ward, W. Bonfield: Hydroxyapatite/high-performance polyethylene fibre composites for high-load-bearing bone replacement materials. J. Appl. Polym. Sci. 65, 1865 (1997).

    CAS  Google Scholar 

  5. M. Wang, R. Joseph, W. Bonfield: Hydroxyapatite-polyethylene composites for bone substitution: Effects of ceramic particle size and morphology. Biomaterials 19, 2357 (1998).

    CAS  Google Scholar 

  6. M. Bonner, L.S. Saunders, I.M. Ward, G.W. Davies, M. Wang, K.E. Tanner, W. Bonfield: Anisotropic mechanical properties of oriented HAPEX™. J. Mater. Sci. 37, 325 (2002).

    CAS  Google Scholar 

  7. L. Di Silvio, M.J. Dalby, W. Bonfield: Osteoblast behaviour on HAP/PE composite surfaces with different HA volumes. Biomaterials 23, 101 (2002).

    Google Scholar 

  8. E.J. Harper, J.C. Behiri, W. Bonfield: Flexural and fatigue properties of a bone cement based upon polyethylmethacrylate and hydroxyapatite. J. Mater. Sci.: Mater. Med. 6, 799 (1995).

    CAS  Google Scholar 

  9. K.E. Watson, K.S. Tenhuisen, P.W. Brown: The formation of hydroxyapatite-calcium polyacrylate composites. J. Mater. Sci.: Mater. Med. 10, 205 (1999).

    CAS  Google Scholar 

  10. Y.E. Greish, P.W. Brown: An evaluation of mechanical property and microstructural development in HAp-Ca polycarboxylate biocomposites prepared by hot pressing. J. Biomed. Mater. Res. Appl. Biomater. 53, 421 (2000).

    CAS  Google Scholar 

  11. M. Kobayashi, T. Nakamura, Y. Okada, A. Fukumoto, T. Furukawa, H. Kato, T. Kokobu, T. Kikutani: Bioactive bone cement: Comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and β-tricalcium phosphate fillers on bone bonding strength. J. Biomed. Mater. Res. 42, 223 (1998).

    CAS  Google Scholar 

  12. S. Shinzato, M. Kobayashi, W.F. Mousa, M. Kamimura, M. Neo, Y. Kitamura, T. Kokubo, T. Nakamura: Bioactive polymethyl methacrylate-based bone cement: Comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. J. Biomed. Mater. Res. 51, 258 (2000).

    CAS  Google Scholar 

  13. S. Higashi, T. Yamamura, T. Nakamura, Y. Ikada, S.H. Hyon, K. Jamshidi: Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 7, 183 (1986).

    CAS  Google Scholar 

  14. C.C.P.M Verheyen, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot: Evaluation of hydroxylapatite/poly(L-lactide) composites: Mechanical behavior. J. Biomed. Mater. Res. 26, 1277 (1992).

    CAS  Google Scholar 

  15. M. Kikuchi, Y. Suetsugu, J. Tanaka, M. Akao: Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J. Mater. Sci.: Mater. Med. 8, 361 (1997).

    CAS  Google Scholar 

  16. N. Ignjatovic, S. Tomic, M. Dakic, M. Miljkovic, M. Plavsic, D. Uskokovic: Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20, 809 (1999).

    CAS  Google Scholar 

  17. Y. Shikinami, M. Okuno: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 20, 859 (1999).

    CAS  Google Scholar 

  18. C. Durucan, P.W. Brown: Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites. J. Biomed. Mater. Res. 51, 717 (2000).

    CAS  Google Scholar 

  19. C. Durucan, P.W. Brown: Calcium-deficient hydroxyapatite-PLGA composites: Mechanical properties and microstructural characterization. J. Biomed. Mater. Res. 51, 726 (2000).

    CAS  Google Scholar 

  20. M.S. Abu Bakar, P. Cheang, K.A. Khor: Thermal processing of hydroxyapatite reinforced polyetheretherketone composites. J. Mater. Process. Technol. 89–90, 462 (1999).

    Google Scholar 

  21. M.S. Abu Bakar, P. Cheang, K.A. Khor: Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Compos. Sci. Technol. 63, 421 (2003).

    CAS  Google Scholar 

  22. M.S. Abu Bakar, P. Cheang, K.A. Khor: Tensile properties and microstructural analysis of spheroidized hydroxyapatitepoly (etheretherketone) biocomposites. Mater. Sci. Eng., A 345, 55 (2003).

    Google Scholar 

  23. M.S. Abu Bakar, M.H.W Cheng, S.M. Tang, S.C. Yu, K. Liao, C.T. Tan, K.A. Khor, P. Cheang: Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24, 2245 (2003).

    CAS  Google Scholar 

  24. M. Wang: Developing bioactive composite materials for tissue replacement. Biomaterials 24, 2133 (2003).

    CAS  Google Scholar 

  25. S.M. Tang, P. Cheang, M.S. Abu Bakar, K.A. Khor, K. Liao: Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. Int. J. Fatigue 26, 49 (2004).

    CAS  Google Scholar 

  26. L.L. Hench: Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74, 1487 (1991).

    CAS  Google Scholar 

  27. R.Z. LeGeros, J.P. LeGeros: Dense hydroxyapatite, in An Introduction to Bioceramics, edited by L.L. Hench and J. Wilson (World Scientific Publishing Co., NJ, 1993), pp. 139–180.

  28. L.L. Hench: Bioceramics. J. Am. Ceram. Soc. 81, 1705 (1998).

    CAS  Google Scholar 

  29. R. Holmes, V. Mooney, R. Bucholz, A. Tencer: A coralline hydroxyapatite bone graft substitute. Clin. Orthop. Relat. Res. 188, 252 (1984).

    CAS  Google Scholar 

  30. H. Oguchi, K. Ishikawa, K. Mizoue, K. Seto, G. Eguchi: Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 16, 33 (1995).

    CAS  Google Scholar 

  31. J.L. Dornhoffer: Hearing results with the Dornhoffer ossicular replacement prostheses. Laryngoscope 108, 531 (1998).

    CAS  Google Scholar 

  32. K. Hasegawa, C.H. Turner, D.B. Burr: Contribution of collagen and mineral to the elastic anisotropy of bone. Calcif. Tissue Int. 55, 381 (1994).

    CAS  Google Scholar 

  33. Y. Takano, C.H. Turner, D.B. Burr: Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: Results from acoustic velocity measurements. J. Bone Miner. Res. 11, 1292 (1996).

    CAS  Google Scholar 

  34. S. Weiner, P.A. Price: Disaggregation of bone into crystals. Calcif. Tissue Int. 39, 365 (1986).

    CAS  Google Scholar 

  35. S. Weiner, W. Traub: Bone structure: From angstroms to microns. FASEB J. 6, 879 (1992).

    CAS  Google Scholar 

  36. G.E. Bacon, P.J. Bacon, R.K. Griffiths: Study of bones by neutron-diffraction. J. Appl. Crystallogr. 10, 124 (1977).

    Google Scholar 

  37. N. Sasaki, N. Matsushima, N. Ikawa, H. Yamamura, A. Fukuda: Orientation of bone mineral and its role in the anisotropic mechanical properties of bone–Transverse anisotropy. J. Biomech. 22, 157 (1989).

    CAS  Google Scholar 

  38. N. Sasaki, Y. Sudoh: X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif. Tissue Int. 60, 361 (1997).

    CAS  Google Scholar 

  39. H.R. Wenk, F. Heidelbach: Crystal alignment of carbonated apatite in bone and calcified tendon: Results from quantitative texture analysis. Bone 24, 361 (1999).

    CAS  Google Scholar 

  40. R.K. Roeder, M.M. Sproul, C.H. Turner: Hydroxyapatite whisker reinforcements used to produce anisotropic biomaterials. Trans. Orthop. Res. Soc. 26, 528 (2001).

    Google Scholar 

  41. R.K. Roeder, M.M. Sproul, C.H. Turner: Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. 67A, 801 (2003).

    CAS  Google Scholar 

  42. G.L. Converse and R.K. Roeder: Tensile properties of hydroxyapatite whisker reinforced polyetheretherketone, in Mechanical Behavior of Biological and Biomimetic Materials edited by A.J. Bushby, V.L. Ferguson, C.C. Ko, and M.L. Oyen (Mater. Res. Soc. Symp. Proc. 898E, Warrendale, PA, 2005), pp. L05–07.

  43. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).

    CAS  Google Scholar 

  44. J.D. Currey: Strength of bone. Nature 195, 513 (1962).

    Google Scholar 

  45. J.D. Currey: The relationship between the stiffness and the mineral content of bone. J. Biomech. 2, 477 (1969).

    CAS  Google Scholar 

  46. W. Voigt: Lehrbuch der Kristallphysik. (B.G. Teubner Verlag, Leipzig, Germany, 1928).

    Google Scholar 

  47. A. Reuss: Computation of the yield point of mixed crystals due to the plasticity condition for single crystals. Z. Angew. Math. Mech. 9, 49 (1929).

    CAS  Google Scholar 

  48. Z. Hashin, S. Shtrikman: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127 (1963).

    Google Scholar 

  49. J.L. Katz: Hard tissue as a composite material—I. Bounds on the elastic behaviour. J. Biomech. 4, 455 (1971).

    CAS  Google Scholar 

  50. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A65, 351 (1952).

    Google Scholar 

  51. K. Piekarski: Analysis of bone as a composite material. Int. J. Eng. Sci. 11, 557 (1973).

    CAS  Google Scholar 

  52. H.D. Wagner, S. Weiner: On the relationship between the microstructure of bone and its mechanical stiffness. J. Biomech. 25, 1311 (1992).

    CAS  Google Scholar 

  53. U. Akiva, H.D. Wagner, S. Weiner: Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J. Mater. Sci. 33, 1497 (1998).

    CAS  Google Scholar 

  54. S. Weiner, W. Traub, H.D. Wagner: Lamellar bone: Structure-function relations. J. Struct. Biol. 126, 241 (1999).

    CAS  Google Scholar 

  55. J.C. Halpin: Primer on Composite Materials Analysis (Technomic Publishing Co., Lancaster, PA, 1992).

    Google Scholar 

  56. R. Hill: Theory of mechanical properties of fibre-strengthened materials: III. Self consistent model. J. Mech. Phys. Solids 13, 189 (1965).

    Google Scholar 

  57. K.J. Bundy: Experimental Studies of the Non-uniformity and Anisotropy of Human Compact Bone (Stanford University, Palo Alto, CA, 1974).

    Google Scholar 

  58. K.J. Bundy: Determination of mineral-organic bonding effectiveness in bone—Theoretical considerations. Ann. Biomed. Eng. 13, 119 (1985).

    CAS  Google Scholar 

  59. N. Sasaki, N. Ikawa, A. Fukuda: Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J. Biomech. 24, 57 (1991).

    CAS  Google Scholar 

  60. H.J. Bunge: Effective elastic constants of cubic materials with arbitrary texture. Kristall Techn. 3, 431 (1968).

    CAS  Google Scholar 

  61. H.J. Bunge, R. Kiewel, Th. Reinert, L. Fritsche: Elastic properties of polycrystals—Influence of texture and stereology. J. Mech. Phys. Solids 48, 29 (2000).

    Google Scholar 

  62. J.C. Halpin, N.J. Pagano: The laminate approximation for randomly oriented fibrous composites. J. Comp. Mater. 3, 720 (1969).

    Google Scholar 

  63. C.W. Camacho, III C.L. Tucker, S. Yalvaç, R.L. McGee: Stiffness and thermal expansion predictions for hybrid short fiber composites. Polym. Compos. 11, 229 (1990).

    CAS  Google Scholar 

  64. P.J. Hine, R.A. Duckett, I.M. Ward: Modelling the elastic properties of fibre-reinforced composites: II Theoretical predictions. Compos. Sci. Technol. 49, 13 (1993).

    CAS  Google Scholar 

  65. H.R. Lusti, P.J. Hine, A.A. Gusev: Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62, 1927 (2002).

    CAS  Google Scholar 

  66. P.J. Hine, H.R. Lusti, A.A. Gusev: Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62, 1445 (2002).

    CAS  Google Scholar 

  67. C.D. Price, P.J. Hine, B. Whiteside, A.M. Cunha, I.M. Ward: Modelling the elastic and thermoelastic properties of short fibre composites with anisotropic phases. Compos. Sci. Technol. 66, 69 (2006).

    CAS  Google Scholar 

  68. R.K. Roeder, G.L. Converse, H. Leng, W. Yue: Kinetic effects on hydroxyapatite whiskers synthesized by the chelate decomposition method. J. Am. Ceram. Soc. 89, 2096 (2006).

    CAS  Google Scholar 

  69. A.T. Standard: D 638-01, Standard Test Method for Tensile Properties of Plastics (American Society for Testing and Materials, West Conshohocken, PA, 2001).

    Google Scholar 

  70. J.B. Park: Biomaterials: An Introduction. (Plenum Press, New York, 1979).

    Google Scholar 

  71. J.L. Katz, K. Ukraincik: On the anisotropic elastic properties of hydroxyapatite. J. Biomech. 4, 221 (1971).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan K. Roeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, W., Roeder, R.K. Micromechanical model for hydroxyapatite whisker reinforced polymer biocomposites. Journal of Materials Research 21, 2136–2145 (2006). https://doi.org/10.1557/jmr.2006.0263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0263

Navigation