Skip to main content
Log in

Compressive properties at elevated temperatures of porous aluminum processed by the spacer method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abatract

Compressive properties at 573-773 K of porous aluminum produced by the spacer method were investigated and compared with those of bulk reference aluminum with the same chemical compositions. The stress exponent and activation energy for deformation at elevated temperatures in the porous aluminum were in agreement with those in the bulk reference aluminum. In addition, the plateau stress of the porous aluminum was comparable to the stress of the bulk reference aluminum upon compensation by the relative density. Therefore, it is conclusively demonstrated that the mechanism of deformation at elevated temperatures in the porous aluminum is the same as that in the bulk reference aluminum. This is likely due to the homogeneous microstructure in the porous aluminum produced by the spacer method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby: Energy absorption in cellular materials in Cellular Solids: Structure and Properties 2nd ed. edited by D.R. Clarke S. Suresh and I.M. Ward (Cambridge University Press Cambridge U.K. 1997) pp. 309–344.

    Book  Google Scholar 

  2. J. Banhart: Manufacture characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46 559 (2001).

    Article  CAS  Google Scholar 

  3. E.W. Andrews L.J. Gibson and M.F. Ashby: Overview No. 132: The creep of cellular solids. Acta Mater. 47 2853 (1999).

    Article  CAS  Google Scholar 

  4. A.C.F. Cocks and M.F. Ashby: Creep-buckling of cellular solids. Acta Mater. 48 3395 (2000).

    Article  CAS  Google Scholar 

  5. E.W. Andrews J.S. Huang and L.J. Gibson: Creep behavior of a closed-cell aluminum foam. Acta Mater. 47 2927 (1999).

    Article  CAS  Google Scholar 

  6. P. Zhang M. Haag O. Kraft A. Wanner and E. Arzt: Microstructural changes in the cell walls of a closed-cell aluminium foam during creep. Philos. Mag. A 82 2895 (2002).

    Article  CAS  Google Scholar 

  7. M. Haag A. Wanner H. Clemens P. Zhang O. Kraft and E. Arzt: Creep of aluminum-based closed-cell foams. Metall. Mater. Trans. A 34A 2809 (2003).

    Article  CAS  Google Scholar 

  8. E.W. Andrews and L.J. Gibson: The role of cellular structure in creep of two-dimensional cellular solids. Mater. Sci. Eng. A 303 120 (2001).

    Article  Google Scholar 

  9. J.S. Huang and L.J. Gibson: Creep of open-cell Voronoi foams. Mater. Sci. Eng. A 339 220 (2003).

    Article  Google Scholar 

  10. Y.Y. Zhao and D.X. Sun: A novel sintering–dissolution process for manufacturing Al foams. Scr. Mater. 44 105 (2001).

    Article  CAS  Google Scholar 

  11. C. Marchi San and A. Mortensen: Deformation of open-cell aluminum foam. Acta Mater. 49 3959 (2001).

    Article  Google Scholar 

  12. C.E. Wen M. Mabuchi Y. Yamada K. Shimojima Y. Chino H. Hosokawa and T. Asahina: Processing of fine-grained aluminum foam by spark plasma sintering. J. Mater. Sci. Lett. 22 1407 (2003).

    Article  CAS  Google Scholar 

  13. M. Hakamada Y. Yamada T. Nomura H. Kusuda Y. Chen and M. Mabuchi: Effect of sintering temperature on compressive properties of porous aluminum produced by spark plasma sintering. Mater. Trans. 46 186 (2005).

    Article  CAS  Google Scholar 

  14. Y. Yamada K. Shimojima Y. Sakaguchi M. Mabuchi M. Nakamura T. Asahina T. Mukai H. Kanahashi and K. Higashi: Compressive properties of open-cellular SG91A Al and AZ91 Mg. Mater. Sci. Eng. A 272 455 (1999).

    Article  Google Scholar 

  15. H.J. Frost and M.F. Ashby: The FCC metals: Ni Cu Ag Al Pb and a-Fe in Deformation-Mechanism Maps (Pergamon Press Oxford U.K. 1982) pp. 20–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Hakamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakamada, M., Nomura, T., Yamada, Y. et al. Compressive properties at elevated temperatures of porous aluminum processed by the spacer method. Journal of Materials Research 20, 3385–3390 (2005). https://doi.org/10.1557/jmr.2005.0415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0415

Navigation